Bond-Orientational Order in Condensed Matter Systems

Bond-Orientational Order in Condensed Matter Systems

Author: Katherine J. Strandburg

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 401

ISBN-13: 1461228123

DOWNLOAD EBOOK

One of the most important aspects of solid materials is the regularity of the arrangement of the constituent molecules, that is, the long-range order. The focus of this book is on the contribution made by the ordering of bond orientations (as distinguished from the orientations of the molecules themselves) on the behavior of condensed systems, particularly their phase transitions. Examples in which bond-orientational effects play an important role are liquid crystals, quasicrystals, and two-dimensional crystals. This book contains contributions by many of the foremost researchers in the field. The chapters are tutorial reviews of the subject, written both for the active researcher looking for a review of a topic and for the graduate student investigating an exciting area of research. The contributions include an overview by J.D. Brock, Cornell; a discussion of computer simulation studies by K.J. Strandburg, Argonne; chapters on phase transition in hexatic liquid crystals by C.C. Huang, Minnesota and C.A. Murray, Texas A&M; and chapters on quasicrystals by S. Sachdev, Yale, M.V. Jaric, A.I. Goldman, Iowa State, and T.-L. Ho, Ohio State.


Bond-Orientational Order in Condensed Matter Systems

Bond-Orientational Order in Condensed Matter Systems

Author: Katherine J. Strandburg

Publisher: Springer

Published: 2011-11-09

Total Pages: 388

ISBN-13: 9781461228134

DOWNLOAD EBOOK

One of the most important aspects of solid materials is the regularity of the arrangement of the constituent molecules, that is, the long-range order. The focus of this book is on the contribution made by the ordering of bond orientations (as distinguished from the orientations of the molecules themselves) on the behavior of condensed systems, particularly their phase transitions. Examples in which bond-orientational effects play an important role are liquid crystals, quasicrystals, and two-dimensional crystals. This book contains contributions by many of the foremost researchers in the field. The chapters are tutorial reviews of the subject, written both for the active researcher looking for a review of a topic and for the graduate student investigating an exciting area of research. The contributions include an overview by J.D. Brock, Cornell; a discussion of computer simulation studies by K.J. Strandburg, Argonne; chapters on phase transition in hexatic liquid crystals by C.C. Huang, Minnesota and C.A. Murray, Texas A&M; and chapters on quasicrystals by S. Sachdev, Yale, M.V. Jaric, A.I. Goldman, Iowa State, and T.-L. Ho, Ohio State.


Introduction to Nonlinear Physics

Introduction to Nonlinear Physics

Author: Lui Lam

Publisher: Springer Science & Business Media

Published: 2003-11-14

Total Pages: 436

ISBN-13: 9780387406145

DOWNLOAD EBOOK

This textbook provides an introduction to the new science of nonlinear physics for advanced undergraduates, beginning graduate students, and researchers entering the field. The chapters, by pioneers and experts in the field, share a unified perspective. Nonlinear science developed out of the increasing ability to investigate and analyze systems for which effects are not simply linear functions of their causes; it is associated with such well-known code words as chaos, fractals, pattern formation, solitons, cellular automata, and complex systems. Nonlinear phenomena are important in many fields, including dynamical systems, fluid dynamics, materials science, statistical physics, and paritcel physics. The general principles developed in this text are applicable in a wide variety of fields in the natural and social sciences. The book will thus be of interest not only to physicists, but also to engineers, chemists, geologists, biologists, economists, and others interested in nonlinear phenomena. Examples and exercises complement the text, and extensive references provide a guide to research in the field.


Physical Adsorption

Physical Adsorption

Author: L.W. Bruch

Publisher: Courier Dover Publications

Published: 2007-03-29

Total Pages: 354

ISBN-13: 0486457672

DOWNLOAD EBOOK

A comprehensive account of the phenomena that occur when simple gases interact with surfaces, this text takes a fundamental perspective. Physical adsorption involves atomic or molecular films bound to surfaces by less than 0.5 eV per particle. Physically absorbed thin films exhibit remarkably diverse properties and behave in a manner characteristic of two-dimensional matter. This exploration focuses on monolayer physics, emphasizing atomic rather than molecular adsorption. The phase diagrams of physically absorbed films are diverse and rich in structure because of the subtle and varied competition between the two interactions: the mutual interaction between adsorbed molecules, and the force binding each molecule to the surface. The authors explain the microscopic origin of these forces in terms of constituent electrons and nuclei. They then examine the structural and dynamical properties of these films in the context of atomic and solid-state physics, statistical mechanics, and computer simulations. This text will be of interest to research chemists, physicists, and engineers alike, as well as students in these fields. Key literature citations allow readers to trace important developments, and thought-provoking problems are addressed in detail.


Nuclear Magnetic Resonance of Liquid Crystals

Nuclear Magnetic Resonance of Liquid Crystals

Author: Ronald Y. Dong

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 320

ISBN-13: 146121954X

DOWNLOAD EBOOK

Intended for researchers and students in physics, chemistry and materials science, this book provides the necessary background information and sufficient mathematical and physical detail to study the current research literature. The book begins with a survey of liquid crystal phases and field effects, together with an introduction to the basic physics of nuclear magnetic resonance. It then discusses orientational ordering and molecular field theories for various liquid crystal molecules and nmr studies of uniaxial and biaxial phases. Subsequent chapters consider spin relaxation processes and rotational, translational, and internal molecular dynamics of liquid crystals. The final chapter discusses two-dimensional and multiple- quantum nmr spectroscopies and their application in elucidating liquid crystal properties. This second edition, updated throughout, incorporates many new references and includes new mathematical appendices.


Fluctuational Effects in the Dynamics of Liquid Crystals

Fluctuational Effects in the Dynamics of Liquid Crystals

Author: E.I. Kats

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 191

ISBN-13: 1461243327

DOWNLOAD EBOOK

Liquid crystals, widely used in displays for electronic equipment and other applications, have highly unusual properties arising from the anisotropy of their molecules. It appears that some aspects of the fluid dynamics of liquid crystals, such as their viscosity, can be understood only by considering the role played by thermal fluctuations. In order to provide a theoretical framework for understanding the experimental results, the authors devote a large part of the book to a derivation of the nonlinear dynamic equations and to a discussion of linearized equations for the various types of liquid crystals. The diagrammatic and other techniques they use are of general use in condensed matter physics, and this exposition should thus be of interest to all condensed-matter theorists.


Micelles, Membranes, Microemulsions, and Monolayers

Micelles, Membranes, Microemulsions, and Monolayers

Author: William M. Gelbart

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 620

ISBN-13: 1461383897

DOWNLOAD EBOOK

Over the last decades, the study of surfactants (detergents, for example) has been profoundly changed by ideas and techniques from physics, chemistry, and materials science. Among these are: self assembly; critical phenomena, scaling, and renormalization; high-resolution scattering, and magnetic resonance spectroscopy. This book represents the first systematic account of these new developments, providing both a general introduction to the subject as well as a review of recent developments. The book will be a very useful tool for the biophysist, biochemist or physical chemist working in the field of surfactants.


Liquid Crystalline and Mesomorphic Polymers

Liquid Crystalline and Mesomorphic Polymers

Author: Valery P. Shibaev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 378

ISBN-13: 1461383331

DOWNLOAD EBOOK

Among the various new directions in modern polymer science, the design and investigation of liquid crystal (LC) polymers have been the ones growing most actively and fruitfully. In spite of that, the possible formation of an anisotropic LC phase was only demonstrated theoretically for the first time in the 1950s by Onsager [1] and Flory [2], and then experimentally verified in the studies with polypeptides solutions. In essence, the studies of these LC lyotropic systems did not deviate from the theme of purely academic interest. It was at the beginning of the 1970s that the experimental "explosion" occurred, when aromatic polyamides were synthesized and their ability to form LC solutions in certain very aggressive solvents was discovered. The search for practical applications of such LC systems was crowned with the successful creation of the new generation of ultrastrong high-modulus ther mostable fibers, such as the Kevlar, due to the high degree of order of the macromolecules in the anisotropic LC state. In fact, these investigations coincided with the swift emergence on the practical "scene" of thermotropic low-molar-mass liquid crystals, with the use of these materials in microelectronics and electro optics (figures and let ters indicators, displays in personal computers, and flat TV, etc.). Polymer scientists also began to develop methods of synthesizing thermotropic LC polymers by incorporating mesogenic fragments in the main (main-chain LC polymers) or side branchings of the macromolecules (side-chain or comb shaped polymers).


Pattern Formation in Liquid Crystals

Pattern Formation in Liquid Crystals

Author: Agnes Buka

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 146123994X

DOWNLOAD EBOOK

In the last 20 years the study of nonlinear nonequilibrium phenomena in spa tially extended systems, with particular emphasis on pattern-forming phenomena, has been one of the very active areas in physics, exhibiting interesting ramifi cations into other sciences. During this time the study of the "classic" systems, like Rayleigh-Benard convection and Taylor vortex flow in simple fluids, has also been supplemented by the study of more complex systems. Here liquid crystals have played, and are still playing, a major role. One might say that liquid crystals provide just the right amount and right kind of complexity. They are full of non linearities and give rise to new symmetry classes, which are sometimes actually simpler to deal with qualitatively, but they still allow a quantitative description of experiments in many cases. In fact one of the attractions of the field is the close contact between experimentalists and theorists. Hydrodynamic instabilities in liquid crystals had already experienced a period of intense study in the late 1960s and early 1970s, but at that time neither the ex perimental and theoretical tools nor the concepts had been developed sufficiently far to address the questions that have since been found to be of particular interest. The renewed interest is also evidenced by the fact that a new series of workshops has evolved. The first one took place in 1989 in Bayreuth and united participants from almost all groups working in pattern formation in liquid crystals.