This text seeks to clarify various contradictory claims regarding capabilities and limitations of blind equalization. It highlights basic operating conditions and potential for malfunction. The authors also address concepts and principles of blind algorithms for single input multiple output (SIMO) systems and multi-user extensions of SIMO equalization and identification.
The absence of training signals from many kinds of transmission necessitates the widespread use of blind equalization and system identification. There have been many algorithms developed for these purposes, working with one- or two-dimensional signals and with single-input single-output or multiple-input multiple-output, real or complex systems. It is now time for a unified treatment of this subject, pointing out the common characteristics of these algorithms as well as learning from their different perspectives. "Blind Equalization and System Identification" provides such a unified treatment presenting theory, performance analysis, simulation, implementation and applications. This is a textbook for graduate courses in discrete-time random processes, statistical signal processing, and blind equalization and system identification. It contains material which will also interest researchers and engineers working in digital communications, source separation, speech processing, and other, similar applications.
The absence of training signals from many kinds of transmission necessitates the widespread use of blind equalization and system identification. There have been many algorithms developed for these purposes, working with one- or two-dimensional signals and with single-input single-output or multiple-input multiple-output, real or complex systems. It is now time for a unified treatment of this subject, pointing out the common characteristics of these algorithms as well as learning from their different perspectives. "Blind Equalization and System Identification" provides such a unified treatment presenting theory, performance analysis, simulation, implementation and applications. This is a textbook for graduate courses in discrete-time random processes, statistical signal processing, and blind equalization and system identification. It contains material which will also interest researchers and engineers working in digital communications, source separation, speech processing, and other, similar applications.
Im Mittelpunkt dieses modernen und spezialisierten Bandes stehen adaptive Strukturen und unüberwachte Lernalgorithmen, besonders im Hinblick auf effektive Computersimulationsprogramme. Anschauliche Illustrationen und viele Beispiele sowie eine interaktive CD-ROM ergänzen den Text.
Speech Dereverberation gathers together an overview, a mathematical formulation of the problem and the state-of-the-art solutions for dereverberation. Speech Dereverberation presents current approaches to the problem of reverberation. It provides a review of topics in room acoustics and also describes performance measures for dereverberation. The algorithms are then explained with mathematical analysis and examples that enable the reader to see the strengths and weaknesses of the various techniques, as well as giving an understanding of the questions still to be addressed. Techniques rooted in speech enhancement are included, in addition to a treatment of multichannel blind acoustic system identification and inversion. The TRINICON framework is shown in the context of dereverberation to be a generalization of the signal processing for a range of analysis and enhancement techniques. Speech Dereverberation is suitable for students at masters and doctoral level, as well as established researchers.
WIRELESS COMMUNICATION SIGNALS A practical guide to wireless communication systems and concepts Wireless technologies and services have evolved significantly over the last couple of decades, and Wireless Communication Signals offers an important guide to the most recent advances in wireless communication systems and concepts grounded in a practical and laboratory perspective. Written by a noted expert on the topic, the book provides the information needed to model, simulate, test, and analyze wireless system and wireless circuits using modern instrumentation and computer aided design software. Designed as a practical resource, the book provides a clear understanding of the basic theory, software simulation, hardware test, and modeling, system component testing, software and hardware interactions and co-simulations. This important book: Provides organic and harmonized coverage of wireless communication systems Covers a range of systems from radio hardware to digital baseband signal processing Presents information on testing and measurement of wireless communication systems and subsystems Includes MATLAB file codes Written for professionals in the communications industry, technical managers, and researchers in both academia and industry. Wireless Communication Signals introduces wireless communication systems and concepts from both a practical and laboratory perspective.
Edited by the people who were forerunners in creating the field, together with contributions from 34 leading international experts, this handbook provides the definitive reference on Blind Source Separation, giving a broad and comprehensive description of all the core principles and methods, numerical algorithms and major applications in the fields of telecommunications, biomedical engineering and audio, acoustic and speech processing. Going beyond a machine learning perspective, the book reflects recent results in signal processing and numerical analysis, and includes topics such as optimization criteria, mathematical tools, the design of numerical algorithms, convolutive mixtures, and time frequency approaches. This Handbook is an ideal reference for university researchers, R&D engineers and graduates wishing to learn the core principles, methods, algorithms, and applications of Blind Source Separation. - Covers the principles and major techniques and methods in one book - Edited by the pioneers in the field with contributions from 34 of the world's experts - Describes the main existing numerical algorithms and gives practical advice on their design - Covers the latest cutting edge topics: second order methods; algebraic identification of under-determined mixtures, time-frequency methods, Bayesian approaches, blind identification under non negativity approaches, semi-blind methods for communications - Shows the applications of the methods to key application areas such as telecommunications, biomedical engineering, speech, acoustic, audio and music processing, while also giving a general method for developing applications
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
This book discusses the fundamentals of RFID and the state-of-the-art research results in signal processing for RFID, including MIMO, blind source separation, anti-collision, localization, covert RFID and chipless RFID. Aimed at graduate students as well as academic and professional researchers/engineers in RFID technology, it enables readers to become conversant with the latest theory and applications of signal processing for RFID. Key Features: Provides a systematic and comprehensive insight into the application of modern signal processing techniques for RFID systems Discusses the operating principles, channel models of RFID, RFID protocols and analog/digital filter design for RFID Explores RFID-oriented modulation schemes and their performance Highlights research fields such as MIMO for RFID, blind signal processing for RFID, anti-collision of multiple RFID tags, localization with RFID, covert RFID and chipless RFID Contains tables, illustrations and design examples