This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
"This book covers a new frontier of research in Critical Materials that provides insight in terms of the possible sustainable mitigation strategies, the complexity, broadness and multi-disciplinarity of the subject. By exploring in both "systems view" and "in-depth materials view" in the light of circular economy, this book tackles the problem of sustainable usage of materials that is closely intertwined with the energy issue and climate change. Topics covered include: geopolitics of materials, the energy-materials nexus, definitions of the criticality of materials, circular product design, the development of alternative materials (substitution), sustainable mining and recycling"--
This book presents a state-of-the-art analysis of energy efficiency as applied to mining processes. From ground fragmentation to mineral processing and extractive metallurgy, experts discuss the current state of knowledge and the nagging questions that call for further research. It offers an excellent resource for all mine managers and engineers who want to improve energy efficiency to boost both production efficiency and sustainability. It will also benefit graduate students and experienced researchers looking for a comprehensive review of the current state of knowledge concerning energy efficiency in the minerals industry.
With both nickel and cobalt featuring heavily in modern industry, there is an ongoing and intense interest in ore supplies and processing, applications development, and recycling. This book presents a collection of authoritative papers covering the latest advances in all aspects of nickel and cobalt processing, including fundamentals, technology, operating practices, and related areas of Platinum-Group Metals (PGM) processing. Special emphasis is given to the treatment of sulphide and laterite ores, concentrates, and secondary materials for the production of nickel and cobalt.
Chemical metallurgy is a well founded and fascinating branch of the wide field of metallurgy. This book provides detailed information on both the first steps of separation of desirable minerals and the subsequent mineral processing operations. The complex chemical processes of extracting various elements through hydrometallurgical, pyrometallurgical or electrometallurgical operations are explained. In the choice of material for this work, the author made good use of the synergy of scientific principles and industrial practices, offering the much needed and hitherto unavailable combination of detailed treatises on both compiled in one book.
This book describes and explains the methods by which three related ores and recyclables are made into high purity metals and chemicals, for materials processing. It focuses on present day processes and future developments rather than historical processes. Nickel, cobalt and platinum group metals are key elements for materials processing. They occur together in one book because they (i) map together on the periodic table (ii) occur together in many ores and (iii) are natural partners for further materials processing and materials manufacturing. They all are, for example, important catalysts – with platinum group metals being especially important for reducing car and truck emissions. Stainless steels and CoNiFe airplane engine super alloys are examples of practical usage. The product emphasises a sequential, building-block approach to the subject gained through the author's previous writings (particularly Extractive Metallurgy of Copper in four editions) and extensive experience. Due to the multiple metals involved and because each metal originates in several types of ore – e.g. tropical ores and arctic ores this necessitates a multi-contributor work drawing from multiple networks and both engineering and science. - Synthesizes detailed review of the fundamental chemistry and physics of extractive metallurgy with practical lessons from industrial consultancies at the leading international plants - Discusses Nickel, Cobalt and Platinum Group Metals for the first time in one book - Reviews extraction of multiple metals from the same tropical or arctic ore - Industrial, international and multidisciplinary focus on current standards of production supports best practice use of industrial resources
A completely revised and up-to-date edition containing comprehensive industrial data. The many significant changes which occurred during the 1980s and 1990s are chronicled. Modern high intensity smelting processes are presented in detail, specifically flash, Contop, Isasmelt, Noranda, Teniente and direct-to-blister smelting. Considerable attention is paid to the control of SO2 emissions and manufacture of H2SO4. Recent developments in electrorefining, particularly stainless steel cathode technology are examined. Leaching, solvent extraction and electrowinning are evaluated together with their impact upon optimizing mineral resource utilization. The volume targets the recycling of copper and copper alloy scrap as an increasingly important source of copper and copper alloys. Copper quality control is also discussed and the book incorporates an important section on extraction economics.Each chapter is followed by a summary of concepts previously described and offers suggested further reading and references.