Calculations for Molecular Biology and Biotechnology

Calculations for Molecular Biology and Biotechnology

Author: Frank H. Stephenson

Publisher: Academic Press

Published: 2010-07-30

Total Pages: 520

ISBN-13: 012375691X

DOWNLOAD EBOOK

Calculations for Molecular Biology and Biotechnology: A Guide to Mathematics in the Laboratory, Second Edition, provides an introduction to the myriad of laboratory calculations used in molecular biology and biotechnology. The book begins by discussing the use of scientific notation and metric prefixes, which require the use of exponents and an understanding of significant digits. It explains the mathematics involved in making solutions; the characteristics of cell growth; the multiplicity of infection; and the quantification of nucleic acids. It includes chapters that deal with the mathematics involved in the use of radioisotopes in nucleic acid research; the synthesis of oligonucleotides; the polymerase chain reaction (PCR) method; and the development of recombinant DNA technology. Protein quantification and the assessment of protein activity are also discussed, along with the centrifugation method and applications of PCR in forensics and paternity testing. - Topics range from basic scientific notations to complex subjects like nucleic acid chemistry and recombinant DNA technology - Each chapter includes a brief explanation of the concept and covers necessary definitions, theory and rationale for each type of calculation - Recent applications of the procedures and computations in clinical, academic, industrial and basic research laboratories are cited throughout the text New to this Edition: - Updated and increased coverage of real time PCR and the mathematics used to measure gene expression - More sample problems in every chapter for readers to practice concepts


The Polymerase Chain Reaction

The Polymerase Chain Reaction

Author: Kary B. Mullis

Publisher: Springer Science & Business Media

Published: 2012-02-02

Total Pages: 464

ISBN-13: 1461202574

DOWNLOAD EBOOK

James D. Watson When, in late March of 1953, Francis Crick and I came to write the first Nature paper describing the double helical structure of the DNA molecule, Francis had wanted to include a lengthy discussion of the genetic implications of a molecule whose struc ture we had divined from a minimum of experimental data and on theoretical argu ments based on physical principles. But I felt that this might be tempting fate, given that we had not yet seen the detailed evidence from King's College. Nevertheless, we reached a compromise and decided to include a sentence that pointed to the biological significance of the molecule's key feature-the complementary pairing of the bases. "It has not escaped our notice," Francis wrote, "that the specific pairing that we have postulated immediately suggests a possible copying mechanism for the genetic material." By May, when we were writing the second Nature paper, I was more confident that the proposed structure was at the very least substantially correct, so that this second paper contains a discussion of molecular self-duplication using templates or molds. We pointed out that, as a consequence of base pairing, a DNA molecule has two chains that are complementary to each other. Each chain could then act ". . . as a template for the formation on itself of a new companion chain, so that eventually we shall have two pairs of chains, where we only had one before" and, moreover, " ...


Opportunities in Biotechnology for Future Army Applications

Opportunities in Biotechnology for Future Army Applications

Author: National Research Council

Publisher: National Academies Press

Published: 2001-07-11

Total Pages: 118

ISBN-13: 0309075556

DOWNLOAD EBOOK

This report surveys opportunities for future Army applications in biotechnology, including sensors, electronics and computers, materials, logistics, and medical therapeutics, by matching commercial trends and developments with enduring Army requirements. Several biotechnology areas are identified as important for the Army to exploit, either by direct funding of research or by indirect influence of commercial sources, to achieve significant gains in combat effectiveness before 2025.


Molecular Biotechnology

Molecular Biotechnology

Author: Bernard R. Glick

Publisher:

Published: 1998

Total Pages: 724

ISBN-13:

DOWNLOAD EBOOK

The second edition explains the principles of recombinant DNA technology as well as other important techniques such as DNA sequencing, the polymerase chain reaction, and the production of monclonal antibodies.


Biological Sequence Analysis

Biological Sequence Analysis

Author: Richard Durbin

Publisher: Cambridge University Press

Published: 1998-04-23

Total Pages: 372

ISBN-13: 113945739X

DOWNLOAD EBOOK

Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.


Gene Biotechnology

Gene Biotechnology

Author: William Wu

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 576

ISBN-13: 1439848327

DOWNLOAD EBOOK

Covering state-of-the-art technologies and a broad range of practical applications, the Third Edition of Gene Biotechnology presents tools that researchers and students need to understand and apply today's biotechnology techniques. Many of the currently available books in molecular biology contain only protocol recipes, failing to explain the princ