Bioprocessing of Plant In Vitro Systems
Author:
Publisher:
Published: 19??
Total Pages:
ISBN-13: 9783319320045
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 19??
Total Pages:
ISBN-13: 9783319320045
DOWNLOAD EBOOKAuthor: National Research Council
Publisher: National Academies Press
Published: 1992-02-01
Total Pages: 133
ISBN-13: 0309047854
DOWNLOAD EBOOKThe ability of the United States to sustain a dominant global position in biotechnology lies in maintaining its primacy in basic life-science research and developing a strong resource base for bioprocess engineering and bioproduct manufacturing. This book examines the status of bioprocessing and biotechnology in the United States; current bioprocess technology, products, and opportunities; and challenges of the future and what must be done to meet those challenges. It gives recommendations for action to provide suitable incentives to establish a national program in bioprocess-engineering research, development, education, and technology transfer.
Author: Vikas Srivastava
Publisher: Springer
Published: 2018-11-27
Total Pages: 344
ISBN-13: 9811325626
DOWNLOAD EBOOKThe growing scale of plant-based chemicals for industrial use has generated considerable interest in developing methods to meet their desired production levels. Among various available strategies for their production, the development of Agrobacterium rhizogenes mediated hairy root cultures (HRCs) is generally considered the most feasible approach. Additionally, several proof-of-principle experiments have demonstrated the practical feasibility of HRCs in the plant-based remediation of environment pollutants, biotransformation of important compounds, and production of therapeutic proteins. Given that hairy root biotechnology has now been recognized as a promising and highly dynamic research area, this book offers a timely update on recent advances, and approaches hairy roots as a multifaceted biological tool for various applications. Further, it seeks to investigate the loopholes in existing methodologies, identify remaining challenges and find potential solutions by presenting well thought-out scientific discussions from various eminent research groups working on hairy root biotechnology. This book provides detailed conceptual and practical information on HRC-based research, along with relevant case studies. The content is divided into three broad sections, namely (i) Hairy Roots and Secondary Metabolism, (ii) Progressive Applications, and (iii) Novel Approaches and Future Prospects. By informing the research and teaching community about the major strides made in HRC-based interventions in plant biology and their applications, the book is sure to spark further research in this fascinating field.
Author: S. Dutta Gupta
Publisher: Springer Science & Business Media
Published: 2006-07-10
Total Pages: 469
ISBN-13: 1402036949
DOWNLOAD EBOOKIt is my privilege to contribute the foreword for this unique volume entitled: “Plant Tissue Culture Engineering,” edited by S. Dutta Gupta and Y. Ibaraki. While there have been a number of volumes published regarding the basic methods and applications of plant tissue and cell culture technologies, and even considerable attention provided to bioreactor design, relatively little attention has been afforded to the engineering principles that have emerged as critical contributions to the commercial applications of plant biotechnologies. This volume, “Plant Tissue Culture Engineering,” signals a turning point: the recognition that this specialized field of plant science must be integrated with engineering principles in order to develop efficient, cost effective, and large scale applications of these technologies. I am most impressed with the organization of this volume, and the extensive list of chapters contributed by expert authors from around the world who are leading the emergence of this interdisciplinary enterprise. The editors are to be commended for their skilful crafting of this important volume. The first two parts provide the basic information that is relevant to the field as a whole, the following two parts elaborate on these principles, and the last part elaborates on specific technologies or applications.
Author: Shijie Liu
Publisher: Newnes
Published: 2012-11-21
Total Pages: 1001
ISBN-13: 0444595228
DOWNLOAD EBOOKBioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. - Contains extensive illustrative drawings which make the understanding of the subject easy - Contains worked examples of the various process parameters, their significance and their specific practical use - Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways - Incorporates sustainability concepts into the various bioprocesses
Author: Claire Komives
Publisher: John Wiley & Sons
Published: 2018-12-27
Total Pages: 288
ISBN-13: 1118361989
DOWNLOAD EBOOKWritten for industrial and academic researchers and development scientists in the life sciences industry, Bioprocessing Technology for Production of Biopharmaceuticals and Bioproducts is a guide to the tools, approaches, and useful developments in bioprocessing. This important guide: • Summarizes state-of-the-art bioprocessing methods and reviews applications in life science industries • Includes illustrative case studies that review six milestone bio-products • Discuses a wide selection of host strain types and disruptive bioprocess technologies
Author: Rudolf Endress
Publisher: Springer Science & Business Media
Published: 2013-04-18
Total Pages: 366
ISBN-13: 3662029960
DOWNLOAD EBOOKIn the past there were many attempts to change natural foodstuffs into high-value products. Cheese, bread, wine, and beer were pro duced, traditionally using microorganisms as biological tools. Later, people influenced the natural process of evolution by artificial selection. In the 19th century, observations regarding the depen dence of growth and reproduction on the nutrient supply led to the establishment of agricultural chemistry. Simultaneously, efforts were directed at defining the correlation between special forms of morphological differentiation and related biochemical processes. New experimental systems were developed after the discovery of phytohormones and their possible use as regulators of growth and differentiation. In these systems, intact plants or only parts of them are cultivated under axenic conditions. These methods, called "in vitro techniques", were introduced to modern plant breeding. In the field of basic research, plant cell cultures were increasingly developed and the correlations between biochemical processes and visible cell variations were explored further. It should be possible to manipulate the basic laws of regulation and the respective biochemi cal processes should be regarded as being independent of morpho logical processes of plant development.
Author: A.K. Hvoslef-Eide
Publisher: Springer Science & Business Media
Published: 2005-06-15
Total Pages: 578
ISBN-13: 1402032005
DOWNLOAD EBOOKHigh-efficiency micropropagation, with relatively low labour costs, has been demonstrated in this unique book detailing liquid media systems for plant tissue culture. World authorities (e.g. von Arnold, Curtis, Takayama, Ziv) contribute seminal papers together with papers from researchers across Europe that are members of the EU COST Action 843 "Advanced micropropagation systems". First-hand practical applications are detailed for crops – including ornamentals and trees – using a wide range of techniques, from thin-film temporary immersion systems to more traditional aerated bioreactors with many types of explant – shoots to somatic embryos. The accounts are realistic, balanced and provide a contemporary account of this important aspect of mass propagation. This book is essential reading for all those in commercial micropropagation labs, as well as researchers worldwide who are keen to improve propagation techniques and lower economic costs of production. Undergraduate and postgraduate students in the applied plant sciences and horticulture will find the book an enlightened treatise.
Author: National Research Council
Publisher: National Academies Press
Published: 2015-06-29
Total Pages: 158
ISBN-13: 0309316553
DOWNLOAD EBOOKThe tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.
Author: Pauline M. Doran
Publisher: Elsevier
Published: 1995-04-03
Total Pages: 455
ISBN-13: 0080528120
DOWNLOAD EBOOKThe emergence and refinement of techniques in molecular biology has changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the picture. Reaping the full benefits of biotechnology requires manufacturing capability involving the large-scale processing of biological material. Increasingly, biotechnologists are being employed by companies to work in co-operation with chemical engineers to achieve pragmatic commercial goals. For many years aspects of biochemistry and molecular genetics have been included in chemical engineering curricula, yet there has been little attempt until recently to teach aspects of engineering applicable to process design to biotechnologists.This textbook is the first to present the principles of bioprocess engineering in a way that is accessible to biological scientists. Other texts on bioprocess engineering currently available assume that the reader already has engineering training. On the other hand, chemical engineering textbooks do not consider examples from bioprocessing, and are written almost exclusively with the petroleum and chemical industries in mind. This publication explains process analysis from an engineering point of view, but refers exclusively to the treatment of biological systems. Over 170 problems and worked examples encompass a wide range of applications, including recombinant cells, plant and animal cell cultures, immobilised catalysts as well as traditional fermentation systems.* * First book to present the principles of bioprocess engineering in a way that is accessible to biological scientists* Explains process analysis from an engineering point of view, but uses worked examples relating to biological systems* Comprehensive, single-authored* 170 problems and worked examples encompass a wide range of applications, involving recombinant plant and animal cell cultures, immobilized catalysts, and traditional fermentation systems* 13 chapters, organized according to engineering sub-disciplines, are groupled in four sections - Introduction, Material and Energy Balances, Physical Processes, and Reactions and Reactors* Each chapter includes a set of problems and exercises for the student, key references, and a list of suggestions for further reading* Includes useful appendices, detailing conversion factors, physical and chemical property data, steam tables, mathematical rules, and a list of symbols used* Suitable for course adoption - follows closely curricula used on most bioprocessing and process biotechnology courses at senior undergraduate and graduate levels.