Animal Life at Low Temperature

Animal Life at Low Temperature

Author: John Davenport

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 249

ISBN-13: 9401123446

DOWNLOAD EBOOK

To humans, cold has a distinctly positive quality. 'Frostbite', 'a nip in the air', 'biting cold', all express the concept of cold as an entity which attacks the body, numbing and damaging it in the process. Probably the richness of descriptive English in this area stems from the early experiences of a group of essentially tropical apes, making their living on a cold and windswept island group half way between the Equator and the Arctic. During a scientific education we soon learn that there is no such thing as cold, only an absence of heat. Cold does not invade us; heat simply deserts. Later still we come to appreciate that temperature is a reflection of kinetic energy, and that the quantity of kinetic energy in a system is determined by the speed of molecular movement. Despite this realization, it is difficult to abandon the sensible prejudices of palaeolithic Homo sapiens shivering in his huts and caves. For example; appreciating that a polar bear is probably as comfortable when swimming from ice floe to ice floe as we are when swimming in the summer Mediterranean is not easy; understanding the thermal sensa tions of a 'cold-blooded' earthworm virtually impossible. We must always be wary of an anthropocentric attitude when considering the effects of cold on other species.


Biophysics and Biochemistry at Low Temperatures

Biophysics and Biochemistry at Low Temperatures

Author: Felix Franks

Publisher: Cambridge University Press

Published: 1985-06-13

Total Pages: 224

ISBN-13: 9780521263207

DOWNLOAD EBOOK

Cold is the single most important enemy of life, and this book, first published in 1985, discusses the responses of living organisms to low temperatures. Subfreezing temperatures in particular affect the properties of water, which is essential to life, and the book describes the physics and chemistry of water in the context of physiology. Injury from cooling and the way in which organisms respond and survive, as well as the mechanism of cold hardening in micro-organisms, insects and plants are discussed. The laboratory exploitation of low temperatures to preserve life and to protect labile materials against freeze damage is also considered.


Biophysics and Biochemistry at Low Temperatures

Biophysics and Biochemistry at Low Temperatures

Author: Felix Franks

Publisher: Cambridge University Press

Published: 2012-07-19

Total Pages: 222

ISBN-13: 9780521269322

DOWNLOAD EBOOK

Cold is the single most important enemy of life, and this book, first published in 1985, discusses the responses of living organisms to low temperatures. Subfreezing temperatures in particular affect the properties of water, which is essential to life, and the book describes the physics and chemistry of water in the context of physiology. Injury from cooling and the way in which organisms respond and survive, as well as the mechanism of cold hardening in micro-organisms, insects and plants are discussed. The laboratory exploitation of low temperatures to preserve life and to protect labile materials against freeze damage is also considered.


Low Temperature Stress Physiology in Crops

Low Temperature Stress Physiology in Crops

Author: P.H. Li

Publisher: CRC Press

Published: 2018-01-18

Total Pages: 211

ISBN-13: 1351082639

DOWNLOAD EBOOK

The importance of low temperature stress physiology research has become increasingly apparent in agriculture for productions of food, fibre and ornamental plants. This volume consists of two parts, there are a total of 14 chapters including 6 chapters dealing with cold accumulation related topics, 6 dealing with freeze stress and 2 related to ethylene production and mefluidide protection.


Insects at Low Temperature

Insects at Low Temperature

Author: Richard Lee

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 516

ISBN-13: 147570190X

DOWNLOAD EBOOK

The study of insects at low temperature is a comparatively new field. Only recently has insect cryobiology begun to mature, as research moves from a descriptive approach to a search for underlying mechanisms at diverse levels of organization ranging from the gene and cell to ecological and evolutionary relationships. Knowledge of insect responses to low temperature is crucial for understanding the biology of insects living in seasonally varying habitats as well as in polar regions. It is not possible to precisely define low temperature. In the tropics exposure to 10-15°C may induce chill coma or death, whereas some insects in temperate and polar regions remain active and indeed even able to fly at O°C or below. In contrast, for persons interested in cryopreservation, low temperature may mean storage in liquid nitrogen at - 196°C. In the last decade, interest in adaptations of invertebrates to low temperature has risen steadily. In part, this book had its origins in a symposium on this subject that was held at the annual meeting of the Entomological Society of America in Louisville, Kentucky, USA in December, 1988. However, the emergence and growth of this area has also been strongly influenced by an informal group of investigators who met in a series of symposia held in Oslo, Norway in 1982, in Victoria, British Columbia, Canada in 1985 and in Cambridge, England in 1988. Another is scheduled for Binghamton, New York, USA (1990).


Plant Cold Hardiness

Plant Cold Hardiness

Author: Paul H. Li

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 360

ISBN-13: 1489902775

DOWNLOAD EBOOK

This volume is compiled based on the proceedings of the 5th International Plant Cold Hardiness Seminar, which was held at Oregon State University, Corvallis, Oregon, USA, August 5 to 8, 1996. Participants representing 16 nations and 22 U. S. states attended the seminar. Researchers came from major laboratories around the world involving plant cold hardiness research. The information compiled in this volume represents the state-of the-art research and our understanding of plant cold hardiness in terms of molecular biol ogy, biochemistry, and physiology. The 1996 International Plant Cold Hardiness Seminar was the fifth of the series; it was first held in 1977 at the University of Minnesota, St. Paul, MN, and since then has met every 5 years. The overall goal of this seminar series is to foster the exchange of ideas and research findings among the diverse groups of scientists studying freezing and chilling stresses from a wide variety of perspectives. This is the only international conference focus ing its programs entirely on low temperature stress in plants. In accordance with the tradi tion, the fifth conference focused on freezing and chilling stress of plants and covered various aspects of plant cold hardiness, including molecular genetics, biochemistry, physi ology, and agricultural applications. All contributors to this volume are eminent researchers who have had significant contributions to the knowledge of plant cold hardiness.