Bionanotechnology: Emerging Applications of Bionanomaterials

Bionanotechnology: Emerging Applications of Bionanomaterials

Author: Ahmed Barhoum

Publisher: Elsevier

Published: 2022-05-29

Total Pages: 572

ISBN-13: 0128242205

DOWNLOAD EBOOK

Bionanotechnology: Emerging Applications of Bionanomaterials highlights a wide range of industrial applications using bionanotechnologies, with biomedical applications prominent amongst these, including drug delivery, tissue engineering, wound healing, medical implants, medical diagnostics and therapy. Other key areas include energy harvesting and storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace. This book is a valuable resource for all those seeking to gain a fundamental understanding of how bionanomaterials are used in a variety of industry sectors. Bionanomaterials are molecular materials composed partially or completely of biological molecules - such as proteins, enzymes, viruses, DNA and biopolymers - as well as metal, metal oxides, and carbon nanomaterials. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications, including scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment. - Assesses which bionanomaterial types are particularly suited to particular application areas - Shows how bionanomaterials are being used for biotechnology, biomedicine, energy production, energy storage, and environmental remediation applications - Highlights the challenges and interdisciplinary perspectives of bionanomaterials in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications


Bionanomaterials

Bionanomaterials

Author: Ravindra Pratap Singh

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9780750337670

DOWNLOAD EBOOK

This reference text brings together comprehensive reviews of the latest research in the field of bionanomaterials, with a focus on fundamentals and biomedical applications. Detailed coverage of the classification, properties and synthesis of bionanomaterials is provided to enhance readers' understanding. The book combines new ideas to uplift the advancement of bionanomaterials in biomedical research and provides a valuable reference for researchers and advanced students in the fields of biomaterials, bionanotechnology and bioengineering. The major applications covered include nanobiosensing, nanomedicine, diagnostics, therapeutics, tissue engineering and green bionanotechnology. The properties and applications of synthetic bionanomaterials and molecularly-imprinted polymer-based bionanomaterials are also included.


Bionanomaterials for Dental Applications

Bionanomaterials for Dental Applications

Author: Mieczyslaw Jurczyk

Publisher: CRC Press

Published: 2012-10-26

Total Pages: 422

ISBN-13: 9814303844

DOWNLOAD EBOOK

This book introduces readers to the structure and characteristics of nanomaterials and their applications in dentistry. With currently available implant materials, the clinical failure rate varies from a few percent to over 10 percent and new materials are clearly needed. Nanomaterials offer the promise of higher strength, better bonding, less toxicity, and enhanced cytocompatibility, leading to increased tissue regeneration. Mieczyslaw Jurczyk, director of the Institute of Materials Science and Engineering at the Poznan University of Technology in Poland, has drawn from work in his laboratory and elsewhere in Poland to show that nanomaterials have important biological applications including in the stomatognathic system consisting of mouth, jaws, and associated structures. The book is written from a materials science and medical point of view and has 13 chapters and about 400 pages. The book can be divided approximately into three sections: the first five chapters introduce nanobiomaterials, the next five chapters describe their dental applications, and the last chapters describe their biocompatibility. Chapter 3 is a compendium on metallic biomaterials such as stainless steel, cobalt alloys, and titanium alloys; bioactive, bioresorbable polymers; and composites and ceramic biomaterials. The "top-down" approach to producing nanomaterials such as high-energy ballmilling and severe plastic deformation, as well as Feynman’s "bottom-up technique" of building atom by atom, are discussed in the next chapter. Subsequent chapters discuss each material in depth and point out how new architectures and properties emerge at the nanoscale. Chapter 8 is devoted to shape-memory materials, which now include not only NiTi but also polymers and magnetic materials. In order to improve bonding, nanomaterials can be used to synthesize implants with surface roughness similar to that of natural tissues. Chapter 9 is devoted to different surface treatments for Ti-based nanomaterials, such as anodic oxidation to improve the bioactivity of titanium and improve the corrosion resistance of porous titanium and its alloys. The use of carbon in various forms—nanoparticles, nanofibers, nanotubes, and thin films—is discussed next with emphasis on the microstructure and properties of these materials, their implant applications, and their interaction with subcutaneous tissues. Nanomaterials can be used in preventive dentistry and therefore can reduce the amount of dental treatment that is necessary to maintain a healthy mouth as argued in chapter 11. In a subsequent chapter, the author explains osseointegration (direct bone-to-metal interface) from a biological point of view and early tissue response. The mechanism of the interaction between the implanted materials with the cellular protein in the tissues is described. The last chapter discusses the application of new nanostructured materials in permanent and bioresorbable implants, nanosurface dental implants, and nanostructured dental composite restorative materials. This book not only focuses on nanomaterials but also on nanoengineering to achieve the best results in dentistry. It is recommended to anyone interested in nanomaterials and their applications in dental science. People with a background in materials, chemistry, physics, and biology will benefit from it.


Introduction to Bionanotechnology

Introduction to Bionanotechnology

Author: Young-Chul Lee

Publisher: Springer Nature

Published: 2020-03-11

Total Pages: 242

ISBN-13: 9811512930

DOWNLOAD EBOOK

This is a comprehensive overview of bionanotechnology to students in nanotechnology, biotechnology, bionanotechnology, related fields such as biology, chemistry, physics, and materials science and also everyone who is interested in this research area. It describes the definition of bionanomaterials, how they can be synthesized, characterized and applied in different fields. The current status and future of bionanotechnology, as well as its advantages and limitations, are comprehensively discussed throughout the book. This is an entry-level book which is easy for readers to understand its contents. In this book, we tried to identify the definition of bionanotechnology. Briefly, Bionanotechnology is the emerging research field that comes from the intersection of nanotechnology and biotechnology. Nanotechnology is referring to the design, development, and application of materials which at least one dimension at nanometer scale meanwhile biotechnology is developed based on knowledge about living systems and organisms to create or improve different products. The association of nanotechnology and biotechnology pave a way to develop a hybrid technology with unique features. Thus, this novel technology will be used to improve our living standard in different aspects from developing new medicine, food, and functional cosmetics, introducing new methods to analyze and treat cancer to protect environmental problems.


Handbook of Nanocelluloses

Handbook of Nanocelluloses

Author: Ahmed Barhoum

Publisher: Springer Nature

Published: 2022-07-15

Total Pages: 1081

ISBN-13: 3030896218

DOWNLOAD EBOOK

This Handbook covers the fundamental aspects, experimental setup, synthesis, properties, and characterization of different nanocelluloses. It also explores the technology challenges of nanocelluloses and the emerging applications and the global markets of nanocelluloses-based systems. In particular, this book: · Covers the history of nanocelluloses, types and classifications, fabrication techniques, critical processing parameters, physical and chemical properties, surface functionalization, and other treatments to allow practical applications. · Covers all recent aspects of nanocelluloses technologies, from experimental set-up to industrial applications. · Includes new physical, chemical and biological techniques for nanocelluloses fabrication, in-depth treatment of their surface functionalization, and characterization. · Discusses the unique properties of nanocelluloses that can be obtained by modifying their diameter, morphology, composition and dispersion in other materials. · Discusses the properties and morphology of several kinds of dispersion in polymeric materials, such as micro/nanofiberlated cellulose, cellulose nanofibers, cellulose nanocrystals, amorphous cellulose nanoparticles, and hybrid cellulose nanomaterials. · Presents the different techniques for dispersion, and self-assembly of polymeric materials, critical parameters of synthesis, modelling and simulation, and characterization methods. · Highlights a wide range of emerging applications of nanocelluloses, e.g. drug delivery, tissue engineering, medical implants, medical diagnostics and therapy, biosensors, catalysis, energy harvesting, energy storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace and many more. · Provides an outlook on the opportunities and challenges for the fabrication and manufacturing of nanocelluloses in industry. · Provides an in-depth look at the nature of nanocelluloses in terms of their applicability for industrial uses. · Provides in-depth insight and review on most recent types of nanocelluloses-based systems of unique structures and compositions. · Highlights the challenges and interdisciplinary perspective of nanocelluloses-based systems in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications. - Demonstrates how cutting-edge developments in nanofibers translate into real-world innovations in a range of industry sectors. This Handbook is a valuable reference for materials scientists, biologists, physicians, chemical, biomedical, manufacturing and mechanical engineers working in R&D industry and academia, who want to learn more about how nanocelluloses-based systems are commercially applied.


Bio-Nanomaterials

Bio-Nanomaterials

Author: Wolfgang Pompe

Publisher: John Wiley & Sons

Published: 2013-05-07

Total Pages: 498

ISBN-13: 352765528X

DOWNLOAD EBOOK

Written by authors from different fields to reflect the interdisciplinary nature of the topic, this book guides the reader through new nano-materials processing inspired by nature. Structured around general principles, each selection and explanation is motivated by particular biological case studies. This provides the background for elucidating the particular principle in a second section. In the third part, examples for applying the principle to materials processing are given, while in a fourth subsection each chapter is supplemented by a selection of relevant experimental and theoretical techniques.


Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment

Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment

Author: Sadanand Pandey

Publisher: John Wiley & Sons

Published: 2024-09-19

Total Pages: 237

ISBN-13: 1394197888

DOWNLOAD EBOOK

The concept of photoelectrochemistry applied to microbial fuel cells could be the future of sustainable wastewater treatment and for hydrogen recovery as a valuable energy source. With the increase of recalcitrant organic pollutants in industrial wastewater, the need for a sustainable bio-electrochemical process has become pressing in order to ensure that treatment processes are coupled with some beneficiation advantages. Microbial fuel cells combine wastewater treatment and biological power generation. However, the resistance of these organic pollutants to biological degradation requires further adjustment of the system to improve sustainability through maximization of energy production. Solar energy conversion using photocatalysis has drawn huge attention for its potential to provide renewable and sustainable energy. Furthermore, it might be the solution to serious environmental and energy-related problems. It has been widely understood for several years that the top global issues today are concerned with securing a clean supply of water and ensuring a reasonable price for clean energy. Researchers are studying advanced materials and processes to produce clean, renewable hydrogen fuel through photocatalytic and photoelectrocatalytic water splitting, as well as to reduce carbon dioxide from the air into fuels through photocatalysis. Limited progress is occurring in these areas. The purpose of this book is to comprehensively cover the evolvement in the conceptualization and application of photocatalytic fuel cells, as well as make a critical assessment of the contribution in the field of sustainable wastewater treatment and renewable energy production. This book contains nine specialized chapters that provide comprehensive coverage of the design of photocatalytic fuel cells and their applications, including environmental remediation, chemical synthesis, green energy generation, model simulation for scaling up processes and implementation, and most importantly maximization of hydrogen evolution, recovery, and applications. Audience A wide audience of academics, industrial researchers, and graduate students working in heterogeneous photocatalysis, fuel cells, sustainable chemistry, nanotechnology, chemical engineering, environmental protection, and surfaces and interfaces, will find this book useful. The book is also important for professionals, namely environmental managers, water treatment plants managers and operators, water authorities, government regulatory bodies officers, and environmentalists.


Advances in Nanostructures

Advances in Nanostructures

Author: Sanjeev Gautam

Publisher: Elsevier

Published: 2024-09-11

Total Pages: 457

ISBN-13: 044314026X

DOWNLOAD EBOOK

Advances in Nanostructures: Processing and Methodology to Grow Nanostructures provides readers with the most appropriate nanostructuring methods used for obtaining nanoparticles with specific requirements suitable for different applications, taking into consideration characteristics such as dimension and shape. The different methods used to synthesize nanomaterials are thoroughly discussed, along nanomaterials' properties and characterization techniques reviewed. Chapters on advanced nanostructures' applications provide in-depth knowledge on applications of these nanostructures in interdisciplinary fields, such as energy, environment, and healthcare areas. - Discusses various physical and chemical methods of preparing nanomaterials - Presents some of the most important techniques for the characterization of nanostructures and nanoparticles - Features applications of nanostructures in the fields of energy, environment, and healthcare


Smart Nanomaterials for Environmental Applications

Smart Nanomaterials for Environmental Applications

Author: Olusola Olaitan Ayeleru

Publisher: Elsevier

Published: 2024-08-26

Total Pages: 828

ISBN-13: 0443217955

DOWNLOAD EBOOK

Smart nanomaterials are making their presence ever so noticeable in areas like environmental protection and remediation, as well as in many other fields of study. The international team of expert researchers behind Smart Nanomaterials for Environmental Applications aims to spotlight the latest, rapid developments in the design and manipulation of materials at the nanoscale and to concisely present information regarding their novel methods of utilization for the safeguard of the environment, while at the same time apprising readers of challenges encountered and anticipated prospects. The volume illustrates state-of-the-art, actionable content, which is relevant and extremely valuable for those who want to apply this up-to-date knowledge in industry too. - Offers fundamentals of smart nanomaterials, including characterization, design, and fabrication methods - Includes advanced information on fine-tuning different morphologies of smart nanomaterials - Features three case studies on real-life applications of smart nanomaterials