This new edition highlights contemporary approaches for designing nanostructures that employ naturally derived self-assembling motifs as synthetic platforms.
This book covers the most cutting-edge developments in the field of magnetic nanoparticles and nanomagnetism, such as novel synthetic and fabrication technologies, diverse magnetic characterization techniques and highly proved and most innovative applications of magnetic nanoparticles. In addition, the book addresses characterization techniques including structural, morphological and magnetic. It is an invaluable reference for experts in the field to consolidate knowledge, provide insight and inspiration to beginners wishing to learn about magnetic nanoparticles. Written at an accessible level suitable for all researchers in materials science, including physicists, biologists, and engineers.
The concept of nanoarchitechtonics was introduced to describe the correct manipulation of nanoscale materials in the creation of nano-devices and applications. Nanoarchitectonics has begun to spread into many fields including nanostructured materials synthesis, supramolecular assembly, nanoscale structural fabrications, materials hybridizations, materials and structures for energy and environmental sciences, device and physical application, and bio- and medical applications. Following on from the 2012 title Manipulation of Nanoscale Materials, Concepts and Design of Materials Nanoarchitectonics covers the introductory features underlying the field, presenting a unifying overview of the theoretical aspects and emerging applications that are changing the capability to understand and design advanced functional materials. Edited by pioneers of the field, this book will appeal to researchers working in nanoscience, materials science, supramolecular chemistry, physical chemistry and organic chemistry, as well as graduate students in these areas.
The expanding use of nanoparticles in a wide range of applications has brought to light the need to adopt an integrated approach regarding their synthesis, use, recovery and handling. This book covers the intense research field of nanoparticle utilization as remediation agents for toxic pollutants, and pays special attention to their post-application recovery, the monitoring of their fate when released, and life cycle analysis. The reader may therefore evaluate the prospects and limitations of these technologies through the prism of sustainability demands. Several chapters summarize successful applications of single or multi-phase nanoparticles for drinking water purification, wastewater and gas-stream treatment and soil consolidation. Importantly, they evaluate the potential scale-up for real-world applications that need to compete with traditional treatment methods. However, the risk of uncontrolled release into the environment can be a significant drawback to the extended use of nanoparticles. For this reason, a detailed analysis is given to aspects of their post-use recycling and regeneration, determination of release pathways, risk assessment methods and life cycle evaluation studies, highlighting the importance of preventing the unintended release of nanoparticles into the environment. This book will be a valuable resource for anyone looking at the development of nanoparticles with a view to environmental remediation strategies.
Nanotechnology is a promising technique that can facilitate sustainability across a wide range of areas. By fabricating materials into nanometre-scale, nanotechnology has facilitated an efficient, economically, and environmentally acceptable solution for waste treatment and energy production. This book illustrates how green nanotechnology is being used to promote sustainability, including applications in environmental remediation and energy optimization. First, a comprehensive discussion of the latest advances to address the global challenges in water purification, CO2 management, plastics issue, food waste valorisation, toxic chemical pollutes, and energy efficiency will be provided. This is followed by the new opportunities that have been created in the production of alternative renewable energy under the premise of low natural resource consumption and minuscule toxicity production. Offering an important reference for the research community to understand more about green nanotechnology and its applications in sustainable development and circular economy. The book will be of interest to graduate students and researchers in nanotechnology, materials science, sustainability, environmental science, and energy.
The integration of nanoparticles with classical drugs to create biocompatible delivery platforms for the treatment of cardiovascular diseases can make a major impact on patient welfare. Traditional drug delivery systems are not selective and induce severe collateral damage to surrounding non-diseased cells and tissues. Nanoparticles, however, can be bio-conjugated with antibodies to encapsulate cardiovascular drugs, gaseous molecules and biomolecules to selectively deliver them in a safe, targeted and cost-effective manner. This book provides in-depth and insightful discussion on the mechanistic, pre-clinical and clinical applications of nanomedicine in cardiovascular disease. It not only discusses core chemical concepts via the synthesis of novel nanotechnology-based drug formulations, but also covers the latest drug delivery advances including innovative therapeutic targets in cardiovascular lesions at an early, curable and reversible stage. Written by experts in the field, students and researchers will find this book equally useful for understanding the trends and challenges of the clinical translation of cardiovascular nanomedicine.
In recent years, there has been a lot of interest in using nanotechnology in medicine to diagnose and cure various infectious diseases. Although the precise mechanism of action is frequently challenged, many nanosized materials have been extensively explored for this purpose, using their innately unique features. Their functionality has also been enhanced by the addition of various coatings, such as those that increase chemical stability and stealth properties or contain targeting agents that lessen off-target effects while producing effective "smart" nanoplatforms for the early detection, treatment, and possibly resolution of diseases. This book aims to compile research and review articles that concentrate on the synthesis, characterization, and applications of nanomaterials, such as nanoparticles, with a focus on investigating novel ways to improve their properties and create new efficient diagnostic, therapeutic, or theranostic approaches with a clear understanding of how they work.