Biomimetic Approach to Solar Energy Conversion

Biomimetic Approach to Solar Energy Conversion

Author:

Publisher:

Published: 1978

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Results of efforts to devise apparatus and systems for using solar energy for chemical purposes by methods that mimic those used by photosynthetic organisms are reported. Sufficient progress has been made in the understanding of plant photosynthesis to make artificial photosynthesis a reasonable goal. Artificial photoreaction centers, the apparatus used by photosynthetic organisms for light energy conversion to chemical oxidizing and reducing capacity, have been made in the laboratory. The synthetic reaction centers mimic with remarkable fidelity the properties of their in vivo prototypes. Some of the formidable problems that must still be solved and the future prospects for biomimetic devices for solar energy conversion are discussed.


Photochemical Conversion and Storage of Solar Energy

Photochemical Conversion and Storage of Solar Energy

Author: John Connolly

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 457

ISBN-13: 0323149707

DOWNLOAD EBOOK

Photochemical Conversion and Storage of Solar Energy contains the proceedings of the Third International Conference on Photochemical Conversion and Storage of Solar Energy held in Boulder, Colorado, on August 3-8, 1980. The papers review the state of the art in the areas of photochemistry and photoelectrochemistry in the context of solar energy conversion and storage. Topics covered include photosynthetic quantum conversion; biomimetic systems for solar energy conversion; and photochemical electron transfer reactions in homogeneous solutions. This volume is comprised of 11 chapters and begins by describing an artificial photosynthetic system that can capture solar quanta and convert them into a stable chemical form. The discussion then turns to biomimetic approaches to solar energy conversion; fluorescent concentrators for photovoltaic cells; requirements for homogeneous photoredox chemistry in inorganic systems; and the use of inorganic components coupled with catalysts in heterogeneous assemblies for photochemical water splitting. The following chapters focus on photogalvanic cells, electrochemical photovoltaic cells, and photoelectrosynthetic reactions at the semiconductor-electrolyte interface. The final chapter examines the thermodynamic limits on photoconversion and storage of solar energy. This monograph will be of interest to chemists and other scientists concerned with the photochemical aspects of solar energy conversion and storage.


Biomimetics

Biomimetics

Author: Raz Jelinek

Publisher: Walter de Gruyter

Published: 2013-06-26

Total Pages: 260

ISBN-13: 3110281198

DOWNLOAD EBOOK

Biological systems have always inspired mankind in the creation of new systems and technologies. In recent years the interface between the biological and non-biological worlds appears increasingly blurred due to significant advances both in our understanding of biological phenomena, as well as the development of sophisticated means to manipulate molecular systems for varied applications. Biomimetics as a distinct discipline shows how biology and biological processes are manifested in diverse aspects of chemistry, physics and engineering. This book aims to methodically describe artificial and synthetic assemblies mimicking biological and living systems - from biomaterials to drug discovery to microelectronics and computer sciences.


Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes

Solar Energy Harvesting with Photosynthetic Pigment-Protein Complexes

Author: Sai Kishore Ravi

Publisher: Springer Nature

Published: 2020-08-24

Total Pages: 179

ISBN-13: 9811563330

DOWNLOAD EBOOK

This book chronicles a few approaches to constructing biohybrid devices using photosynthetic protein complexes. Can the abundantly available solar energy be tapped to meet our rising energy demands using green and cheap active materials? Exploring nature’s own tiny solar factories, the photosynthetic proteins could hold the key. Photosynthetic pigment-protein complexes found in plants and certain types of bacteria transduce sunlight into biologically useful forms of energy through a photochemical charge separation that has a 100% quantum efficiency. Getting the photoproteins to perform this efficient energy conversion reaction in a semi-artificial setup is central to developing biohybrid solar technologies, a promising green alternative to today’s photovoltaics. This book looks into the existing challenges and opportunities in the field of biohybrid photovoltaics and provides a few prospective methods of enhancing the photocurrent and photovoltage in these devices. The book targets the readership of students, academics, and industrial practitioners who are interested in alternative solar technologies.