Biomedical Technology and Devices

Biomedical Technology and Devices

Author: James E. Moore Jr

Publisher: CRC Press

Published: 2013-06-25

Total Pages: 791

ISBN-13: 1439860610

DOWNLOAD EBOOK

Biomedical Technology and Devices, Second Edition focuses on the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. Gathering together and compiling the latest information available on medical technology, this revised work adds ten new chapters. It starts with the basics, introducing the hist


Biomedical Technology and Devices Handbook

Biomedical Technology and Devices Handbook

Author: George Zouridakis

Publisher: CRC Press

Published: 2003-08-14

Total Pages: 848

ISBN-13: 9780849311406

DOWNLOAD EBOOK

Concise yet comprehensive, the Biomedical Technology and Devices Handbook illuminates the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. With topics ranging from the basic procedures like blood pressure measurement to cutting-edge imaging equipment, biological tests, and genetic engineering, this book is organized to navigate smoothly from simple procedures and concepts to the more sophisticated and complex ones. Each section contains a description of the technique, its technical considerations, and its use according to its applications and relevant body systems. The book includes references to relevant Web sites, protocols, problems, and solutions.


Developing Biomedical Devices

Developing Biomedical Devices

Author: Giuseppe Andreoni

Publisher: Springer Science & Business Media

Published: 2013-09-24

Total Pages: 90

ISBN-13: 331901207X

DOWNLOAD EBOOK

During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the development of devices and products for healthcare, it presents a brief description of the human body, covering anatomy and physiology, that will assist the reader in understanding the origin of biosignals, their significance and the technology to be used in their measurement. Issues concerning IPR and protections are also fully discussed, with examples and opportunities for IPR exploitation.


Biomedical Device Technology

Biomedical Device Technology

Author: Anthony Y. K. Chan

Publisher:

Published: 2016-06-03

Total Pages:

ISBN-13: 9780398091255

DOWNLOAD EBOOK

With this resource, instructors can create custom slide shows and presentations using the 388 illustrations and 53 tables from Biomedical Device Technology: Principles and Design (2nd Ed.). This CD contains all the images, figures and tables included in the textbook in JPG format.


Commercializing Successful Biomedical Technologies

Commercializing Successful Biomedical Technologies

Author: Shreefal S. Mehta

Publisher: Cambridge University Press

Published: 2008-04-24

Total Pages: 449

ISBN-13: 110739421X

DOWNLOAD EBOOK

Successful product design and development requires the ability to take a concept and translate the technology into useful, patentable, commercial products. This book guides the reader through the practical aspects of the commercialization process of drug, diagnostic and device biomedical technology including market analysis, product development, intellectual property and regulatory constraints. Key issues are highlighted at each stage in the process, and case studies are used to provide practical examples. The book will provide a sound road map for those involved in the biotechnology industry to effectively plan the commercialization of profitable regulated medical products. It will also be suitable for a capstone design course in engineering and biotechnology, providing the student with the business acumen skills involved in product development.


Biomedical Engineering and Information Systems: Technologies, Tools and Applications

Biomedical Engineering and Information Systems: Technologies, Tools and Applications

Author: Shukla, Anupam

Publisher: IGI Global

Published: 2010-07-31

Total Pages: 383

ISBN-13: 161692005X

DOWNLOAD EBOOK

"Bridging the disciplines of engineering and medicine, this book informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services"--Provided by publisher.


Human resources for medical devices - the role of biomedical engineers

Human resources for medical devices - the role of biomedical engineers

Author: World Health Organization

Publisher: World Health Organization

Published: 2017-05-09

Total Pages: 0

ISBN-13: 9789241565479

DOWNLOAD EBOOK

This publication addresses the role of the biomedical engineer in the development, regulation, management, training, and use of medical devices. The first part of the book looks at the biomedical engineering profession globally as part of the health workforce: global numbers and statistics, professional classification, general education and training, professional associations, and the certification process. The second part addresses all of the different roles that the biomedical engineer can have in the life cycle of the technology, from research and development, and innovation, mainly undertaken in academia; the regulation of devices entering the market; and the assessment or evaluation in selecting and prioritizing medical devices (usually at national level); to the role they play in the management of devices from selection and procurement to safe use in healthcare facilities. The annexes present comprehensive information on academic programs, professional societies, and relevant WHO and UN documents related to human resources for health as well as the reclassification proposal for ILO. This publication can be used to encourage the availability, recognition, and increased participation of biomedical engineers as part of the health workforce, particularly following the recent adoption of the recommendations of the UN High-Level Commission on Health Employment and Economic Growth, the WHO Global Strategy on Human Resources for Health, and the establishment of national health workforce accounts. The document also supports the aim of reclassification of the role of the biomedical engineer as a specific engineer that supports the development, access, and use of medical devices within the national, regional, and global occupation classification system.


Medical Device Technologies

Medical Device Technologies

Author: Gail D. Baura

Publisher: Academic Press

Published: 2011-10-07

Total Pages: 529

ISBN-13: 012374976X

DOWNLOAD EBOOK

Medical Device Technologies introduces undergraduate engineering students to commonly manufactured medical devices. It is the first textbook that discusses both electrical and mechanical medical devices. The first 20 chapters are medical device technology chapters; the remaining eight chapters focus on medical device laboratory experiments. Each medical device chapter begins with an exposition of appropriate physiology, mathematical modeling or biocompatibility issues, and clinical need. A device system description and system diagram provide details on technology function and administration of diagnosis and/or therapy. The systems approach lets students quickly identify the relationships between devices. Device key features are based on five applicable consensus standard requirements from organizations such as ISO and the Association for the Advancement of Medical Instrumentation (AAMI). The medical devices discussed are Nobel Prize or Lasker Clinical Prize winners, vital signs devices, and devices in high industry growth areas Three significant Food and Drug Administration (FDA) recall case studies which have impacted FDA medical device regulation are included in appropriate device chapters Exercises at the end of each chapter include traditional homework problems, analysis exercises, and four questions from assigned primary literature Eight laboratory experiments are detailed that provide hands-on reinforcement of device concepts


Healthcare and Biomedical Technology in the 21st Century

Healthcare and Biomedical Technology in the 21st Century

Author: George R. Baran

Publisher: Springer Science & Business Media

Published: 2013-10-05

Total Pages: 515

ISBN-13: 146148541X

DOWNLOAD EBOOK

Healthcare and Biotechnology in the 21st Century: Concepts and Case Studies introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures. The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements.


Biomedical Technology

Biomedical Technology

Author: Peter Wriggers

Publisher: Springer

Published: 2017-08-29

Total Pages: 356

ISBN-13: 3319595482

DOWNLOAD EBOOK

This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’s last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.