Handbook of Medical Imaging

Handbook of Medical Imaging

Author:

Publisher: Academic Press

Published: 2000-10-09

Total Pages: 983

ISBN-13: 0080533108

DOWNLOAD EBOOK

In recent years, the remarkable advances in medical imaging instruments have increased their use considerably for diagnostics as well as planning and follow-up of treatment. Emerging from the fields of radiology, medical physics and engineering, medical imaging no longer simply deals with the technology and interpretation of radiographic images. The limitless possibilities presented by computer science and technology, coupled with engineering advances in signal processing, optics and nuclear medicine have created the vastly expanded field of medical imaging. The Handbook of Medical Imaging is the first comprehensive compilation of the concepts and techniques used to analyze and manipulate medical images after they have been generated or digitized. The Handbook is organized in six sections that relate to the main functions needed for processing: enhancement, segmentation, quantification, registration, visualization as well as compression storage and telemedicine. * Internationally renowned authors(Johns Hopkins, Harvard, UCLA, Yale, Columbia, UCSF) * Includes imaging and visualization * Contains over 60 pages of stunning, four-color images


Biomedical Image Reconstruction

Biomedical Image Reconstruction

Author: Michael T. McCann

Publisher:

Published: 2019

Total Pages: 80

ISBN-13: 9781680836516

DOWNLOAD EBOOK

This book is written in a tutorial style that concisely introduces students, researchers and practitioners to the development and design of effective biomedical image reconstruction algorithms.


Biomedical Image Processing

Biomedical Image Processing

Author: Thomas Martin Deserno

Publisher: Springer Science & Business Media

Published: 2011-03-01

Total Pages: 617

ISBN-13: 3642158161

DOWNLOAD EBOOK

In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.


Medical Image Reconstruction

Medical Image Reconstruction

Author: Gengsheng Zeng

Publisher: Springer Science & Business Media

Published: 2010-12-28

Total Pages: 204

ISBN-13: 3642053688

DOWNLOAD EBOOK

"Medical Image Reconstruction: A Conceptual Tutorial" introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l0-minimization are also included. This book is written for engineers and researchers in the field of biomedical engineering specializing in medical imaging and image processing with image reconstruction. Gengsheng Lawrence Zeng is an expert in the development of medical image reconstruction algorithms and is a professor at the Department of Radiology, University of Utah, Salt Lake City, Utah, USA.


Machine Learning for Medical Image Reconstruction

Machine Learning for Medical Image Reconstruction

Author: Farah Deeba

Publisher: Springer Nature

Published: 2020-10-21

Total Pages: 170

ISBN-13: 3030615987

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Biomedical Image Analysis

Biomedical Image Analysis

Author: Rangaraj M. Rangayyan

Publisher: CRC Press

Published: 2004-12-30

Total Pages: 1312

ISBN-13: 0203492544

DOWNLOAD EBOOK

Computers have become an integral part of medical imaging systems and are used for everything from data acquisition and image generation to image display and analysis. As the scope and complexity of imaging technology steadily increase, more advanced techniques are required to solve the emerging challenges. Biomedical Image Analysis demonstr


Magnetic Resonance Image Reconstruction

Magnetic Resonance Image Reconstruction

Author: Mehmet Akcakaya

Publisher: Academic Press

Published: 2022-11-04

Total Pages: 518

ISBN-13: 012822746X

DOWNLOAD EBOOK

Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction


Medical Image Processing

Medical Image Processing

Author: Geoff Dougherty

Publisher: Springer Science & Business Media

Published: 2011-07-25

Total Pages: 388

ISBN-13: 1441997792

DOWNLOAD EBOOK

The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.


Biosignal and Medical Image Processing

Biosignal and Medical Image Processing

Author: John L. Semmlow

Publisher: CRC Press

Published: 2021-10-01

Total Pages: 630

ISBN-13: 1466567376

DOWNLOAD EBOOK

Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classify


Machine Learning for Medical Image Reconstruction

Machine Learning for Medical Image Reconstruction

Author: Florian Knoll

Publisher: Springer Nature

Published: 2019-10-24

Total Pages: 274

ISBN-13: 3030338436

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Second International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. The 24 full papers presented were carefully reviewed and selected from 32 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging; deep learning for computed tomography; and deep learning for general image reconstruction.