Biomedical Applications of Light Scattering

Biomedical Applications of Light Scattering

Author: Adam Wax

Publisher: McGraw Hill Professional

Published: 2009-09-22

Total Pages: 401

ISBN-13: 0071598812

DOWNLOAD EBOOK

Clinical applications include: detecting pre-cancerous and cancerous tissue states; characterizing cell and tissue properties for identifying disease; and assessing the presence and concentration of biochemicals for diagnostic purposes Part of the McGraw-Hill Biophotonics Series


Tissue Optics

Tissue Optics

Author: Valery Tuchin

Publisher:

Published: 2015

Total Pages: 988

ISBN-13: 9781628415162

DOWNLOAD EBOOK

This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.


Biomedical Applications of Light Scattering XII

Biomedical Applications of Light Scattering XII

Author: Adam Wax

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9781510648203

DOWNLOAD EBOOK

Extend tissue characterization and analysis capabilities using cutting-edge biophotonics tools and technologies. This comprehensive resource details the principles, devices, and procedures necessary to fully employ light scattering in clinical and diagnostic applications. Biomedical Applications of Light Scattering explains how to work with biological scatterers and scattering codes, accurately model tissues and cells, build time-domain simulations, and resolve inverse scattering issues. Noninvasive biopsy procedures, precancer and disease screening methods, and fiber optic probe design techniques are also covered in this detailed volume.


Dynamic Light Scattering

Dynamic Light Scattering

Author: Bruce J. Berne

Publisher: Courier Corporation

Published: 2013-07-24

Total Pages: 482

ISBN-13: 0486320243

DOWNLOAD EBOOK

Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation functions, with chapters on projection operator techniques in statistical mechanics. The first half comprises most of the material necessary for an elementary understanding of the applications to the study of macromolecules, or comparable sized particles in fluids, and to the motility of microorganisms. The study of collective (or many particle) effects constitutes the second half, including more sophisticated treatments of macromolecules in solution and most of the applications of light scattering to the study of fluids containing small molecules.With its wide-ranging discussions of the many applications of light scattering, this text will be of interest to research chemists, physicists, biologists, medical and fluid mechanics researchers, engineers, and graduate students in these areas.


Handbook of Optical Biomedical Diagnostics

Handbook of Optical Biomedical Diagnostics

Author: Valeriĭ Viktorovich Tuchin

Publisher:

Published: 2016

Total Pages: 688

ISBN-13: 9781628419122

DOWNLOAD EBOOK

This text begins by describing the basic principles and diagnostic applications of optical techniques based on detecting and processing the scattering, fluorescence, FT IR, and Raman spectroscopic signals from various tissues, with an emphasis on blood, epithelial tissues, and human skin. The second half of the volume discusses specific imaging technologies, such as Doppler, laser speckle, optical coherence tomography (OCT), and fluorescence and photoacoustic imaging.


Dynamic Light Scattering

Dynamic Light Scattering

Author: R. Pecora

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 429

ISBN-13: 1461323894

DOWNLOAD EBOOK

In the twenty years since their inception, modern dynamic light-scattering techniques have become increasingly sophisticated, and their applications have grown exceedingly diverse. Applications of the techniques to problems in physics, chemistry, biology, medicine, and fluid mechanics have prolifer ated. It is probably no longer possible for one or two authors to write a monograph to cover in depth the advances in scattering techniques and the main areas in which they have made a major impact. This volume, which we expect to be the first of aseries, presents reviews of selected specialized areas by renowned experts. It makes no attempt to be comprehensive; it emphasizes a body of related applications to polymeric, biological, and colloidal systems, and to critical phenomena. The well-known monographs on dynamic light scattering by Berne and Pecora and by Chu were published almost ten years ago. They provided comprehensive treatments of the general principles of dynamic light scat tering and gave introductions to a wide variety of applications, but natu rally they could not treat the new applications and advances in older ones that have arisen in the last decade. The new applications include studies of interacting particles in solution (Chapter 4); scaling approaches to the dynamics of polymers, including polymers in semidilute solution (Chapter 5); the use of both Fabry-Perot interferometry and photon correlation spectroscopy to study bulk polymers (Chapter 6); studies of micelIes and microemulsions (Chapter 8); studies of polymer gels (Chapter 9).