Biomedical and Pharmaceutical Polymers

Biomedical and Pharmaceutical Polymers

Author: Denis J.-P. Labarre

Publisher: Pharmaceutical Press

Published: 2011

Total Pages: 173

ISBN-13: 0853697302

DOWNLOAD EBOOK

This much needed and timely book will provide students with an introduction to general concepts of polymer science and some insights into speciality polymers. Polymers are becoming increasingly present in the domain of health yet introduction to polymers is not frequently taught. Biomedical and Pharmaceutical Polymers is the only book available for introducing polymers to graduate or post-graduate students who use them in the biomedical and pharmaceutical fields. In four sections the book covers: * why study polymers for the health sciences? * general characteristics of polymers * main methods and processes to synthesize polymers * special properties of polymers The final section of the book also contains case studies and detailed examples of biomedical and pharmaceutical applications. Biomedical and Pharmaceutical Polymers is a user-friendly textbook which will be an essential reference for postgraduate pharmaceutical science students, pharmaceutical scientists worldwide and pharmacy undergraduate students with an interest in polymers.


Natural and Synthetic Biomedical Polymers

Natural and Synthetic Biomedical Polymers

Author: Sangamesh G. Kum bar

Publisher: Newnes

Published: 2014-01-21

Total Pages: 421

ISBN-13: 0123972906

DOWNLOAD EBOOK

Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future


Biopolymers and Nanocomposites for Biomedical and Pharmaceutical Applications

Biopolymers and Nanocomposites for Biomedical and Pharmaceutical Applications

Author: Eram Sharmin

Publisher: Nova Biomedical Books

Published: 2017

Total Pages: 0

ISBN-13: 9781536106350

DOWNLOAD EBOOK

Biopolymers are endowed with excellent attributes such as biodegradability, biocompatibility and functional versatility, which render them an edge over other polymers. Today, they find broad applications in the biomedical field and pharmaceutical world. Nanotechnology has offered tremendous opportunities to design and tailor-make biopolymers augmenting their applications further. This book presents topical articles on the synthesis and applications of biopolymers, biopolymer nanoparticles and nanocomposites. The book includes chapters on conducting polymers, vegetable oils, chitosan and cellulose based polyurethanes, polymeric hydrogels, biopolymeric nanoparticles and nanocomposites, and their applications as drug carriers and sensors in cancer therapy and others. This book would be useful for students, scholars, and scientists interested in the synthesis, biomedical and pharmaceutical applications of biopolymers and their nanocomposites.


Biomedical Polymers

Biomedical Polymers

Author: Mike Jenkins

Publisher: CRC Press

Published: 2007-09-10

Total Pages: 244

ISBN-13:

DOWNLOAD EBOOK

A review of the latest research on biomedical polymers, this book discusses natural, synthetic, biodegradable and non bio-degradable polymers and their applications. Chapters discuss polymeric scaffolds for tissue engineering and drug delivery systems, the use of polymers in cell encapsulation, their role as replacement materials for heart valves and arteries, and their applications in joint replacement. The book also discusses the use of polymers in biosensor applications. Edited by an expert team of reasearchers and containing contributions from pioneers throughout the field, the book is an essential reference for scientists and all those developing and using this important group of biomaterials.


Polymers in Medicine

Polymers in Medicine

Author: Emo Chiellini

Publisher: CRC Press

Published: 1992-06-13

Total Pages: 276

ISBN-13: 9780877629290

DOWNLOAD EBOOK

The utilization of polymers in medicine has become a reality in the last decade. This book is a concise presentation of the fundamentals, applications, and methods of optimization of polymeric drugs and polymeric drug delivery systems for medicinal purposes. The basic rationale for the use of polymeric drugs and polymer delivery systems is the possibility to alter the pharmacokinetics and pharmacodynamics of therapeutic agents so as to maintain an adequate therapeutic environment at the site of disfunction for an extended period of time. The primary objectives for using polymeric drugs and polymeric drug delivery systems are to introduce new and efficient methods of drug administration, to improve efficacy and patient compliance, to decrease toxicity, and to ensure safety. The following factors influence the design and performance of polymers for medicinal applications: disease, drug properties, type of therapy (acute or chronic), physiology of the patient, administration route, and the site requiring therapy.


Polymer Science and Technology

Polymer Science and Technology

Author: Joel R. Fried

Publisher: Pearson Education

Published: 2014

Total Pages: 688

ISBN-13: 0137039557

DOWNLOAD EBOOK

This text describes how plastics, rubber, and fibers are synthesized, processed into useful materials, characterized, and compounded with fillers and other additives to improve performance for specific applications. Their use in a wide variety of technologies including membrane separations, electronics, and energy production and storage is described. A new chapter in the Third Edition shows how computer correlations and simulations can be used to predict properties of new plastics and to better understand how existing plastics perform.


Cosmetic and Pharmaceutical Applications of Polymers

Cosmetic and Pharmaceutical Applications of Polymers

Author: T. Cheng

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 409

ISBN-13: 1461538580

DOWNLOAD EBOOK

Polymers continue to show almost amazing versatility. We have always known that polymers could be used for trinkets, toys and dishes. Now, however, we are no longer surprised to encounter these adaptable mate rials in almost every place we look. We find them in our cars, tools, electronic devices, building materials, etc. The use of polymeric mate rials in medicine is also well documented in previous books by one of the Editors (Gebelein) and by others. Likewise, the use of polymeric mate rials in pharmaceutical applications, especially in controlled release systems, is also well established. Nevertheless, the use of these ubiquitous chemicals is far less ob vious in the field of cosmetics, although modern cosmetic preparations rely heavily on polymers and this trend is certain to increase. This book brings together much of the basic information on polymers in cosmetics and compares this usage with similar applications in pharmaceutical and medical applications. Cosmetics, like medicine and pharmacy, dates back to antiquity. We can find uses of perfumes, balms and ointments in various old books, such as the Bible. For example, the use of ointments and balms is noted more than thirty eight times, and perfumes and related materials are cited at least twenty nine times in the Bible.


Natural-Based Polymers for Biomedical Applications

Natural-Based Polymers for Biomedical Applications

Author: Rui L. Reis

Publisher: Elsevier

Published: 2008-08-15

Total Pages: 829

ISBN-13: 1845694813

DOWNLOAD EBOOK

Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine


Science and Principles of Biodegradable and Bioresorbable Medical Polymers

Science and Principles of Biodegradable and Bioresorbable Medical Polymers

Author: Xiang Cheng Zhang

Publisher: Woodhead Publishing

Published: 2016-09-22

Total Pages: 478

ISBN-13: 0081003935

DOWNLOAD EBOOK

Science and Principles of Biodegradable and Bioresorbable Medical Polymers: Materials and Properties provides a practical guide to the use of biodegradable and bioresorbable polymers for study, research, and applications within medicine. Fundamentals of the basic principles and science behind the use of biodegradable polymers in advanced research and in medical and pharmaceutical applications are presented, as are important new concepts and principles covering materials, properties, and computer modeling, providing the reader with useful tools that will aid their own research, product design, and development. Supported by practical application examples, the scope and contents of the book provide researchers with an important reference and knowledge-based educational and training aid on the basics and fundamentals of these important medical polymers. - Provides a practical guide to the fundamentals, synthesis, and processing of bioresorbable polymers in medicine - Contains comprehensive coverage of material properties, including unique insights into modeling degradation - Written by an eclectic mix of international authors with experience in academia and industry


Advances in Polymers for Biomedical Applications

Advances in Polymers for Biomedical Applications

Author: Deepak Pathania

Publisher: Nova Medcine & Health

Published: 2018

Total Pages: 0

ISBN-13: 9781536136128

DOWNLOAD EBOOK

Polymers have generated considerable interest in a large number of technologically important fields such as human healthcare systems. Polymers represent a very important domain of materials and have become an integral part of day to day human life. Polymers exist in nature; they have been and continue to be an integral part of the universe. This book is intended for scientists and researchers to use in their research or in their professional practice in polymer chemistry and its biomedical applications. Multiple biological, synthetic and hybrid polymers are used for multiple medical applications. A wide range of different polymers are available, and they have the advantage to be tunable in physical, chemical and biological properties and in a wide range to match the requirements of specific applications. This book gives a brief overview about the introduction and developments of polymers for different applications. The biomedical polymers comprise not only bulk materials, but also coatings and pharmaceutical nano-carriers for drugs. The surface modification of the inorganic nanoparticles with a physically or chemically end-tethered polymer chain has been employed to overcome the problems associated with the polymers. Chemically attached polymer chains not only stabilize the inorganic nanoparticles, but also lead to photosensitivity, bioactivity, biocompatibility and pharmacological properties in the composites. Polymer encapsulated silica nanocomposites (mesoporous) have potential applications in different fields, such as optics, bio-catalysis, microelectronics bone tissue engineering, coatings cosmetics, inks, agriculture, drug release systems, diagnoses, enzyme imaging, temperature-responsive materials, and thermosensitive vehicles for cellular imaging. Polymer grafted nanosized particles are known to have excellent properties such as good dispersion ability in solvents and polymer matrices. Polymer-based controlled drug delivery systems have some specific advantages, such as improved efficiency and reduced toxicity. The incorporation of a thermoresponsive polymer layer often enhances protein absorption and specific biomolecular tagging through hydrogen bonding. As a result, the nanocomposite gets cleared from the body at a faster rate (blood residence becomes low). This book is composed of fourteen edited chapters; it is intended for scientists and researchers to use in their research or in their professional practice in polymer chemistry and its biomedical applications.