Global agriculture is now at the crossroads. The Green Revolution of the last century is losing momentum. Rates of growth in food production are now declining, with land and water resources becoming scarcer, while world population continues to grow. We need to continue to identify and share the knowledge that will support successful and sustainable
Agriculture in the 21st century will need considerable modification to remain both productive and sustainable. Greater production is needed to meet the needs of our still-growing populations and to combat hunger and poverty. Declines in soil health and the pollution of water sources are making many of our production systems less tenable. These adverse trends are exacerbated more and more by the impacts of climate change. There are, fortunately, alternative methods available for agricultural practice that can countervail these constraints. Biological Approaches to Regenerative Soil Systems brings together the work of both researchers and practitioners to map out better approaches to contemporary agriculture that draw upon both old and new knowledge. It presents the science that underlies more biologically driven strategies as well as contemporary innovative experiences in diverse parts of the world. Both accepted research and these varied experiences encourage confidence that these approaches, not relying primarily on the introduction of new varieties and on exogenous inputs, can succeed. This book updates and revises a preceding volume Biological Approaches to Sustainable Soil Systems published by CRC Press in 2006. So much has been learned and done on this subject in the past decade and a half that a second edition was warranted. For instance, the first edition was published, knowledge about plant-soil microbiomes, which are a frequent focus in this book, has mushroomed. Because sustainability is a broad term and an end-state, the editors preferred to assemble expertise regarding regenerative agriculture, which is concerned with the means for achieving sustainability. The concept of regenerative soil systems, entities that are more complex and multifaceted than "soil" alone, also incorporates a concern with having more resilient agricultural systems, ones that are better able to cope with the multiple stresses of climate change that are foreseen for the decades ahead. The book’s chapters representing a wide range of disciplines were contributed by 84 scientists and practitioners from 20 countries. Although they come from persons with in-depth knowledge of their respective fields, the chapters are written to be accessible to readers who are not trained in the specialized subjects. Taken together, the chapters provide students, researchers, practitioners, planners, and policy makers with a comprehensive understanding of both the science and the steps needed to regenerate and sustain soil systems around the world for the long-term benefit of humankind and the environment.
This study looks at the fundamentals of soil science and soil biology, encompassing topics such as the building blocks of the soil system and bioremediation of contaminated soils.
It is becoming more relevant to explore soil biological processes in terms of their contribution to soil fertility. This book presents a comprehensive scientific overview of the components and processes that underpin the biological characteristics of soil fertility. It highlights the enormous diversity of life in soil and the resulting effects that management of land can have on the contribution of this diverse community to soil fertility in an agricultural context.
Soil Health and Intensification of Agroecosystems examines the climate, environmental, and human effects on agroecosystems and how the existing paradigms must be revised in order to establish sustainable production. The increased demand for food and fuel exerts tremendous stress on all aspects of natural resources and the environment to satisfy an ever increasing world population, which includes the use of agriculture products for energy and other uses in addition to human and animal food. The book presents options for ecological systems that mimic the natural diversity of the ecosystem and can have significant effect as the world faces a rapidly changing and volatile climate. The book explores the introduction of sustainable agroecosystems that promote biodiversity, sustain soil health, and enhance food production as ways to help mitigate some of these adverse effects. New agroecosystems will help define a resilient system that can potentially absorb some of the extreme shifts in climate. Changing the existing cropping system paradigm to utilize natural system attributes by promoting biodiversity within production agricultural systems, such as the integration of polycultures, will also enhance ecological resiliency and will likely increase carbon sequestration. - Focuses on the intensification and integration of agroecosystem and soil resiliency by presenting suggested modifications of the current cropping system paradigm - Examines climate, environment, and human effects on agroecosystems - Explores in depth the wide range of intercalated soil and plant interactions as they influence soil sustainability and, in particular, soil quality - Presents options for ecological systems that mimic the natural diversity of the ecosystem and can have significant effect as the world faces a rapidly changing and volatile climate
Poor land management has degraded vast amounts of land, reduced our ability to produce enough food, and is a major threat to rural livelihoods in many developing countries. This book provides a thorough analysis of the multifaceted impacts of land use on soils. Abundantly illustrated with full-color images, it brings together renowned academics and policy experts to analyze the patterns, driving factors and proximate causes, and the socioeconomic impacts of soil degradation.
This book deals with ways and means of managing food and water security in various agroclimatic environments through the integration of R & D, training, people participation, agronomic practices, economic instruments, and administrative policies. It includes contributions by global experts in the field, who elaborate on the governance of f
Soils and Landscape Restoration provides a multidisciplinary synthesis on the sustainable management and restoration of soils in various landscapes. The book presents applicable knowledge of above- and below-ground interactions and biome specific realizations along with in-depth investigations of particular soil degradation pathways. It focuses on severely degraded soils (e.g., eroded, salinized, mined) as well as the restoration of wetlands, grasslands and forests. The book addresses the need to bring together current perspectives on land degradation and restoration in soil science and restoration ecology to better incorporate soil-based information when restoration plans are formulated. - Incudes a chapter on climate change and novel ecosystems, thus collating the perspective of soil scientists and ecologists on this consequential and controversial topic - Connects science to international policy and practice - Includes summaries at the end of each chapter to elucidate principles and key points
An understanding of the mineral nutrition of plants is of fundamental importance in both basic and applied plant sciences. The fourth edition of this book retains the aim of the first in presenting the principles of mineral nutrition in the light of current advances. Marschner's Mineral Nutrition of Plants, 4th Edition, is divided into two parts: Nutritional Physiology and Plant–Soil Relationships. In Part I, emphasis is put on uptake and transport of nutrients in plants, root–shoot interactions, role of mineral nutrition in yield formation, stress physiology, water relations, functions of mineral nutrients and contribution of plant nutrition to food nutritional quality, disease tolerance, and global nutritional security of human populations. In view of the increasing interest in plant–soil interactions. Part II focuses on the effects of external and internal factors on root growth, rhizosphere chemistry and biology, soil-borne ion toxicities, and nutrient cycling. Now with color figures throughout, this book continues to be a valuable reference for plant and soil scientists and undergraduate and graduate students in the fields of plant nutrition, nutritional physiology, and soil fertility. - Offers new content on the relationship between climate change, soil fertility and crop nutrition - Keeps overall structure of previous editions - Includes updates in every chapter on new developments, ideas and challenges
Natural Resources Conservation and Advances for Sustainability addresses the latest challenges associated with the management and conservation of natural resources. It presents interdisciplinary approaches to promote advances in solving these challenges. By examining what has already been done and analyzing it in the context of what still needs to be done, particularly in the context of latest technologies and sustainability, the book helps to identify ideal methods for natural resource management and conservation. Each chapter begins with a graphical abstract and presents complicated or detailed content in the form of figures or tables. In addition, the book compares the latest techniques with conventional techniques and troubleshoots conventional methods with modifications, making it a practical resource for researchers in environmental science and natural resource management. - Discusses the pros and cons of past and current endeavors related to natural resource management - Presents recent technologies and methods for management and conservation, particularly with applications for sustainability - Covers a variety of disciplines, from environmental science to life science - Includes a graphical abstract as well as a section on significant achievements in the field and future perspectives