Bioelectrochemistry: Fundamentals, Experimental Techniques and Application, covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of biolelectrochemisty including amperometric biosensors, immunoassays, electrochemistry of DNA, biofuel cells, whole cell biosensors, in vivo applications and bioelectrosynthesis. By bringing together these different aspects, this work provides a unique source of information in this area, approaching the subject from a cross-disciplinary viewpoint.
This is the first course devoted to bioelectrochemistry held within the frame work of the International School of Biophysics. Although this branch of scientific research is already about two centuries old, as a truly independent one it has been in a stage of lively development since only a few decades ago and this is why a first course at the E. Majorana Center was devoted to it. Since bioelectrochemistry consists of many sub-fields, it is impossible to include, even superficially, all of them in a short course lasting just a week, and therefore the chapter of redox-reactions was chosen for this first course as being most general in character. But even restricting the course to redox-reactions, only a few subjects could be included and therefore the choice among them was made considering the most general guidelines that could serve as a basis for the further study of individual problems. In this way we hope to give a sound basis to the study of and to stimulate further interest in this branch of both biological and physical chemistry. This dual interdisciplinary approach is, on the other hand, unavoidable if a more rigorous and logical attack on biological problems in living bodies is to be carried ahead. VII CONTENTS ix Symbols and acronyms Opening address A. BORSELLINO 1 Bioelectrochemistry and bioenergetics: an interdisciplinary survey G. MILAZZO 5 General criteria for the fulfilment of redox reactions R. BUVET 15 Photosynthesis - selected topics H.
Bioelectrochemistry conferences. journals and texts are be ginning to proliferate and to attract researchers and scholars with a bent for multiple disciplines, electrochemistry, electrical engineering, physics, biology and medicine. With the development of highly sophisticated apparatus, new techniques and embracing skills, bioelectrochemistry represents the area where searching questions can now be asked about processes of Life itself, not only how sub stances interact in vivo but what distinguishes animate from in animate matter. During this Joint Seminar, for example, it was pointed out that a human liver alive appeared mauve while in the isolated state it is brown, even though it is capable of a comprehensive range of biochem ical activities ordinarily encountered in laboratory "in vivo" sit uations. Bioelectrochemical studies are beginning to elucidate the growth of bone, the genesis and division of living cells, the transfer of energy and matter from one compartment to other compartments in a living system, with great promise for curative and preventative medicine. The organizers of this Seminar have been truly fortunate to be able to bring together workers who have been intimately associated with the origins and development of some of the more powerful concepts which have stimulated progress in the field of bioelectrochemistry. These include the solid state, semiconduction and structured water. By a happy circumstance a number of Australian researchers in this field were present in the United States. or en route thereto, at about the proposed dates of the Seminar.
Bioelectrochemistry: Principles and Practice provides a comprehensive compilation of all the physicochemical aspects of the different biochemical and physiological processes. The role of electric and magnetic fields in biological systems forms the focus of this second volume in the Bioelectrochemistry series. The most prominent use of electric fields is found in some fish. These species generate fields of different strengths and patterns serving either as weapons, or for the purpose of location and communication. Electrical phenomena involved in signal transduction are discussed by means of two examples, namely excitation-contraction coupling in muscles and light transduction in photoreceptors. Also examined is the role of electrical potential differences in energy metabolism and its control. Temporal and spatial changes of the potential difference across the membranes of nerve cells are carefully evaluated, since they are the basis of the spreading and processing of information in the nervous system. The dielectric properties of cells and their responses to electric fields, such as electrophoresis and electrorotation, are dealt with in detail. Finally, the effects of magnetic fields on living systems and of low-frequency electromagnetic fields on cell metabolism are also considered. Further volumes will be added to the series, which is intended as a set of source books for graduate and postgraduate students as well as research workers at all levels in bioelectrochemistry.
Bioelectrochemistry is a fast growing field linking together electrochemistry, biochemistry, medicinal chemistry and analytical chemistry. The current book outlines the recent progress in the area and the applications in biological materials design and bioenergy, covering in particular biosensors, bioelectronic devices, biofuel cells, biodegradable batteries and biomolecule-based computing.
As stated by Buckminster Fuller in Operation Manual for Spaceship Earth, "Synergy is the behavior of whole systems unpredicted by separately observed behaviors of any of the system's separate parts". In a similar vein, one might define an intellectual synergy as "an improvement in our understanding of the behavior of a system unpredicted by separately acquired viewpoints of the activities of such a system". Such considerations underlie, and provide a motivation for, an interdisciplinary approach to the problem of unraveling the deeper mysteries of cellular metabolism and organization, and have led a number of pioneering spirits, many represen ted in the pages which follow, to consider biological systems from an elec trochemical standpoint. is itself, of course, an interdisciplinary branch of Now electrochemistry science, and there is no doubt that many were introduced to it via Bockris and Reddy's outstanding, wide-ranging and celebrated textbook Modern Electrochemistry. If I am to stick my neck out, and seek to define bioelec trochemistry, I would take it to refer to "the study of the mutual interac tions of electrical fields and biological materials, including living systems".
This book reviews the latest advances in the bioelectrochemical degradation of recalcitrant environmental contaminants. The first part introduces readers to the basic principles and methodologies of bioelectrochemical systems, electron-respiring microorganisms, the electron transfer mechanism and functional electrode materials. In turn, the second part addresses the bioelectrochemical remediation/treatment of various environmental pollutants (including highly toxic refractory organics, heavy metals, and nitrates) in wastewater, sediment and wetlands. Reactor configuration optimization, hybrid technology amplification and enhanced removal principles and techniques are also discussed. The book offers a valuable resource for all researchers and professionals working in environmental science and engineering, bioelectrochemistry, environmental microbiology and biotechnology.
This book presents a collection of chapters on modern bioelectrochemistry, showing different aspects of electron transfer reactions in biological systems and techniques. The chapters cover computer simulation, biomolecules on surfaces, direct and mediated electron transfer, electron transfer kinetics, surface-confined biomolecules, field-effect transistor effects, supramolecular electrochemistry, in situ and operando techniques in bioelectrochemistry. They provide relevant bibliographic information for researchers and students interested in computer simulation involving biomolecules on surfaces, processes of direct and mediated electron transfer kinetics of cytochrome c, surface-confined biomolecules for application in bioelectronics, sensitive devices based on field-effect transistors, insights on supramolecular electrochemistry with recent trends and perspectives and technological innovation on instrumentation applied in operando techniques field.
This book presents a collection of chapters on modern bioelectrochemistry focusing on new materials for biodevice, bioelectrosynthesis and bioenergy. The chapters cover protein engineering, semiconductors, biorecognition, graphene-based bioelectronics, bioelectrosynthesis, biofuel cells, bioinspired batteries and biophotovoltaics.
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.