Biodegradable Polymers, Blends and Composites

Biodegradable Polymers, Blends and Composites

Author: Sanjay Mavinkere Rangappa

Publisher: Woodhead Publishing

Published: 2021-11-07

Total Pages: 770

ISBN-13: 0128237929

DOWNLOAD EBOOK

Biodegradable Polymers, Blends and Composites provides a comprehensive review on recent developments in this very important research field. The book's chapters cover the various types of biodegradable polymers currently available and their composites, with discussions on preparation, properties and applications. Sections cover natural rubber-based polymer blends, soy-protein, cellulose, chitin, starch-based, PLA, PHBV, PCL, PVA, PBAT-based blends, Poly (ethylene succinate), PHB and Poly (propylene carbonates). The book will be a valuable reference resource for academic and industrial researchers, technologists and engineers working on recent developments in the area of biodegradable polymers, their blends and composites. - Discusses the various types of biodegradable polymers, blends and composites - Covers natural rubber, cellulose, chitin, starch, PLA, PCL and PBAT - Features modern processing technologies, properties, applications and biodegradability


Biodegradable Polymer Blends and Composites from Renewable Resources

Biodegradable Polymer Blends and Composites from Renewable Resources

Author: Long Yu

Publisher: John Wiley & Sons

Published: 2009-03-25

Total Pages: 400

ISBN-13: 0470391553

DOWNLOAD EBOOK

Biodegradable Polymer Blends and Composites from Renewable Resources provides a comprehensive, current overview of biopolymeric blends and composites and their applications in various industries. The book is organized according to the type of blend or composite. For each topic, the relationship between the structure of the blends/composites and their respective properties is explored, with particular focus on interface, compatibility, mechanical, and thermal properties. Real-life applications and potential markets are discussed. This is a premier reference for graduate students and researchers in polymer science, chemical and bio engineering, and materials science.


Algae Based Polymers, Blends, and Composites

Algae Based Polymers, Blends, and Composites

Author: Khalid Mahmood Zia

Publisher: Elsevier

Published: 2017-06-19

Total Pages: 740

ISBN-13: 0128123613

DOWNLOAD EBOOK

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. - Provides detailed information on the extraction of useful compounds from algal biomass - Highlights the development of a range of polymers, blends, and composites - Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development - Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials


Handbook of Biopolymers and Biodegradable Plastics

Handbook of Biopolymers and Biodegradable Plastics

Author: Sina Ebnesajjad

Publisher: William Andrew

Published: 2012-12-31

Total Pages: 473

ISBN-13: 1455730033

DOWNLOAD EBOOK

Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction indusry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for the plastics industry – material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators – and for industry sectors utilizing biopolymers – automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry. Essential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics. Includes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.


Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends

Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends

Author: Raghvendra Kumar Mishra

Publisher: Woodhead Publishing

Published: 2017-06-19

Total Pages: 370

ISBN-13: 0081019920

DOWNLOAD EBOOK

Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends is a comprehensive reference for researchers, students and scientists working in the field of plastics recycling and composites. The book aims to determine the influence of micro and nanofibrillar morphology on the properties of immiscible blend systems. Chapters cover micro and nanofibrillar composites based on polyolefin, liquid crystal polymer, biodegradable polymers, polyester and polyamide blends in various industrial application fields. The book brings together panels of highly-accomplished experts in the field of plastics recycling, blends and composites systems. For several decades, plastic technology has played an important role in many industrial applications, such as packaging, automobiles, aerospace and construction. However the increasing use of plastics creates a lot of waste. This has led to restrictions on the use of some plastics for certain applications and a drive towards recycling of plastics. More recently, microfibrillar in-situ composites have been prepared from waste plastics such as PET/PP, PET/PE and Nylon/PP as a way of formulating new high performance polymer systems. This book tackles these issues and more, and is an ideal resource for anyone interested in polymer blends. - Provides information on MFC and NFC based polymer blends that have been accumulated over the last 25 years, providing a useful reference - Adopts a novel approach in terms of understanding the relationship between processing, morphology, structure, properties and applications in micro and nanofibrillar composites - Contains contributions from leading experts in the field from both industrial and academic research


Sustainable Polylactide-Based Blends

Sustainable Polylactide-Based Blends

Author: Suprakas Sinha Ray

Publisher: Elsevier

Published: 2022-02-16

Total Pages: 460

ISBN-13: 0323858694

DOWNLOAD EBOOK

Sustainable Polylactide-Based Blends provides a critical overview of the state-of-the-art in polylactide (PLA)-based blends, addressing the latest advances, innovative processing techniques and fundamental issues that persist in the field. Sections cover the fundamentals of sustainable polymeric materials, polylactide and polymer blends, current and upcoming processing technologies, structure and morphology characterization techniques for PLA and PLA-based blends, and the processing, morphology development, and properties of polylactide-based blends. Final chapters focus on current and future applications, market potential, key challenges and future outlooks. Throughout the book, theoretical modeling of immiscible polymer blends helps to establish structure-property relationships in various PLA-based polymer blends. With in-depth coverage of fundamentals and processing techniques, the book aims to support the selection of each processing method, along with an understanding of surface chemistry to achieve improved compatibility between phases. - Explains fundamental aspects of polylactide-based blends, including characterization methods and property measurement techniques - Offers comprehensive and detailed coverage of processing, morphology and properties, all organized by blend material - Analyzes novel methods and addresses challenges associated with PLA-based blends, with a focus on applications and market potential


Environmentally Friendly Polymers and Polymer Composites

Environmentally Friendly Polymers and Polymer Composites

Author: Rafael Balart

Publisher: MDPI

Published: 2021-03-17

Total Pages: 293

ISBN-13: 3036500367

DOWNLOAD EBOOK

Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.


Bio-Based Epoxy Polymers, Blends, and Composites

Bio-Based Epoxy Polymers, Blends, and Composites

Author: Jyotishkumar Parameswaranpillai

Publisher: John Wiley & Sons

Published: 2021-04-26

Total Pages: 402

ISBN-13: 3527346481

DOWNLOAD EBOOK

State-of-the-art overview on bioepoxy polymers as well as their blends and composites -- covering all aspects from fundamentals to applications! Bioepoxy polymers is an emerging area and have attracted more and more attention due to their biodegradability and good thermo-mechanical performance. In recent years, research progress has been made in synthesis, processing, characterization, and applications of bioepoxy blends and composites. Bioepoxy polymers are very promising candidates to replace the traditional thermosetting nonbiodegradable polymers. Bio-Based Epoxy Polymers, Blends and Composites summaries recent research progress on bioepoxy polymers as well as their blends and composites. It covers aspects from synthesis, processing, various characterization techniques to broad spectrum of applications. It provides a correlation of physical properties with macro, micro and nanostructures of the materials. Moreover, research trends, future directions, and opportunities are also discussed. Attracts attention: Bioepoxy polymers are environmentally friendly and considered as a promising candidate to replace the traditional thermosetting nonbiodegradable polymers Highly application-oriented: Bioepoxy polymers can be used in a broad range of applications such as polymer foams, construction, aerospace, automobiles, self-healing systems One-stop reference: Covers all aspects of bioepoxy polymer, their blends and composites, such as synthesis, properties, processing, characterization and applications Broad audience: Attracts attention from both academia and industry


Shape Memory Polymers, Blends and Composites

Shape Memory Polymers, Blends and Composites

Author: Jyotishkumar Parameswaranpillai

Publisher: Springer

Published: 2019-07-01

Total Pages: 333

ISBN-13: 9811385742

DOWNLOAD EBOOK

This book explores the recent advances in the field of shape memory polymers, whose ease of manufacturing and wide range of potential applications have spurred interest in the field. The book presents details about the synthesis, processing, characterization, and applications of shape memory polymers, their blends and composites. It provides a correlation of physical properties of shape memory polymers with macro, micro and nano structures. The contents of this book will be of interest to researchers across academia and industry.


Characterization of Polymer Blends

Characterization of Polymer Blends

Author: Sabu Thomas

Publisher: John Wiley & Sons

Published: 2015-02-09

Total Pages: 972

ISBN-13: 3527331530

DOWNLOAD EBOOK

Filling the gap for a reference dedicated to the characterization of polymer blends and their micro and nano morphologies, this book provides comprehensive, systematic coverage in a one-stop, two-volume resource for all those working in the field. Leading researchers from industry and academia, as well as from government and private research institutions around the world summarize recent technical advances in chapters devoted to their individual contributions. In so doing, they examine a wide range of modern characterization techniques, from microscopy and spectroscopy to diffraction, thermal analysis, rheology, mechanical measurements and chromatography. These methods are compared with each other to assist in determining the best solution for both fundamental and applied problems, paying attention to the characterization of nanoscale miscibility and interfaces, both in blends involving copolymers and in immiscible blends. The thermodynamics, miscibility, phase separation, morphology and interfaces in polymer blends are also discussed in light of new insights involving the nanoscopic scale. Finally, the authors detail the processing-morphology-property relationships of polymer blends, as well as the influence of processing on the generation of micro and nano morphologies, and the dependence of these morphologies on the properties of blends. Hot topics such as compatibilization through nanoparticles, miscibility of new biopolymers and nanoscale investigations of interfaces in blends are also addressed. With its application-oriented approach, handpicked selection of topics and expert contributors, this is an outstanding survey for anyone involved in the field of polymer blends for advanced technologies.