Planar Lipid Bilayers (BLM's) and Their Applications

Planar Lipid Bilayers (BLM's) and Their Applications

Author: H.T. Tien †

Publisher: Elsevier

Published: 2003-02-27

Total Pages: 1045

ISBN-13: 0080539033

DOWNLOAD EBOOK

The lipid bilayer is the most basic structural element of cell membranes. A wide range of topics are covered in this volume, from the origin of the lipid bilayer concept, to current applications and experimental techniques. Each chapter in this volume is self-contained and describes a group's research, providing detailed methodology and key references useful for researchers. Lipid bilayer research is of great interest to many because of it's interdisciplinary nature.·Provides an overview of decades of research on the lipid bilayer·38 contributed chapters, by leading scientists, cover a wide range of topics in one authoritative volume·Book coincides with 40th anniversary of BLM


Electroporation and Electrofusion in Cell Biology

Electroporation and Electrofusion in Cell Biology

Author: C.A. Jordan

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 435

ISBN-13: 1489925287

DOWNLOAD EBOOK

Cells can be funny. Try to grow them with a slightly wrong recipe, and they turn over and die. But hit them with an electric field strong enough to knock over a horse, and they do enough things to justify international meetings, to fill a sizable book, and to lead one to speak of an entirely new technology for cell manipulation. The very improbability of these events not only raises questions about why things happen but also leads to a long list of practical systems in which the application of strong electric fields might enable the merger of cell contents or the introduction of alien but vital material. Inevitably, the basic questions and the practical applications will not keep in step. The questions are intrinsically tough. It is hard enough to analyze the action of the relatively weak fields that rotate or align cells, but it is nearly impossible to predict responses to the cell-shredding bursts of electricity that cause them to fuse or to open up to very large molecular assemblies. Even so, theoretical studies and systematic examination of model systems have produced some creditable results, ideas which should ultimately provide hints of what to try next.


Lipid Domains

Lipid Domains

Author:

Publisher: Academic Press

Published: 2015-06-08

Total Pages: 393

ISBN-13: 0128033274

DOWNLOAD EBOOK

Current Topics in Membranes is targeted toward scientists and researchers in biochemistry and molecular and cellular biology, providing the necessary membrane research to assist them in discovering the current state of a particular field and in learning where that field is heading. This volume offers an up to date presentation of current knowledge in the field of Lipid Domains. - Written by leading experts - Contains original material, both textual and illustrative, that should become a very relevant reference material - The material is presented in a very comprehensive manner - Both researchers in the field and general readers should find relevant and up-to-date information


Ion Channel Reconstitution

Ion Channel Reconstitution

Author: C. Miller

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 579

ISBN-13: 1475713614

DOWNLOAD EBOOK

It is now over 30 years since the idea of ion-conducting pores burst on the elec trophysiological scene, 15 years since these were generalIy realized to be mem brane-spanning proteins, and 10 years since the first observations of single ion channels from higher organisms were made. During the past 5 years, several integral membrane channel proteins have been purified in a functionalIy competent state: the nicotinic acetylcholine receptor, the Na + channel, mitochondrial "VDAC," and a variety of porins. The stage is thus set to attack ion channels in the same ways that biochemists have been attacking enzymes for decades: isolation folIowed by functional analysis in as simple a system as possible, with a view towards understanding the molecular mechanisms ofthe protein's behavior and how this is related to the underlying molecular structure. This is always a daunting task, alI the more so with ion channels because of our still primitive and scanty understanding of channel structures and because of the difficulty in iso lating functionally active channel proteins. In this volume, which can be considered a biochemically slanted companion to Sakmann and Neher's Single-Channel Recording, I have tried to present a view of the current landscape of ion-channel reconstitution. These chapters illustrate not only the different approaches and techniques of the major practitioners of ion channel reconstitution but, as importantly, the varied motivations for doing this kind of work.


Thermal Biophysics of Membranes

Thermal Biophysics of Membranes

Author: Thomas Heimburg

Publisher: John Wiley & Sons

Published: 2008-02-08

Total Pages: 378

ISBN-13: 3527611606

DOWNLOAD EBOOK

An overview of recent experimental and theoretical developments in the field of the physics of membranes, including new insights from the past decade. The author uses classical thermal physics and physical chemistry to explain our current understanding of the membrane. He looks at domain and 'raft' formation, and discusses it in the context of thermal fluctuations that express themselves in heat capacity and elastic constants. Further topics are lipid-protein interactions, protein binding, and the effect of sterols and anesthetics. Many seemingly unrelated properties of membranes are shown to be intimately intertwined, leading for instance to a coupling between membrane state, domain formation and vesicular shape. This also applies to non-equilibrium phenomena like the propagation of density pulses during nerve activity. Also included is a discussion of the application of computer simulations on membranes. For both students and researchers of biophysics, biochemistry, physical chemistry, and soft matter physics.


Bilayer Lipid Membranes. Structure and Mechanical Properties

Bilayer Lipid Membranes. Structure and Mechanical Properties

Author: Tibor Hianik

Publisher: Springer Science & Business Media

Published: 1995-08-31

Total Pages: 452

ISBN-13: 0792335511

DOWNLOAD EBOOK

In Bilayer Lipid Membranes. Structure and Mechanical Properties the authors use new methods of measurement, which they have themselves developed, to present an analysis of the relation between membrane structure and viscoelastic properties, in particular in the transversal direction. Hianik and Passechnik's approach is fundamentally different from the usual one, in that they analyze lipid bilayer dynamics during various modes of deformation, arriving at a new, `three-layer' model that accounts for the great heterogeneity of biomembranes. The macroscopic parameters of membranes have been measured using a wide variety of methods, leading to a discussion of the correlations between the parameters. There is also an extensive discussion of the dynamic changes in mechanical properties of lipid bilayers in the course of conformational transition of integral proteins. During the conformational changes of proteins, the structure of a bilayer undergoes a transition, reaching a new, stable membrane state. The book is the first to present a comprehensive analysis of long-distance interaction in lipid bilayers and of molecular mechanisms of mechanoreception. Audience: Scientists and graduate students working in biophysics, membranology, physiology, medicine, pharmacology, bioelectronics, electrochemistry, and colloid chemistry.


Bioelectrochemistry

Bioelectrochemistry

Author: Philip N. Bartlett

Publisher: John Wiley & Sons

Published: 2008-05-27

Total Pages: 494

ISBN-13: 0470753838

DOWNLOAD EBOOK

Bioelectrochemistry: Fundamentals, Experimental Techniques and Application, covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of biolelectrochemisty including amperometric biosensors, immunoassays, electrochemistry of DNA, biofuel cells, whole cell biosensors, in vivo applications and bioelectrosynthesis. By bringing together these different aspects, this work provides a unique source of information in this area, approaching the subject from a cross-disciplinary viewpoint.


Cell Physiology Source Book

Cell Physiology Source Book

Author: Nicholas Sperelakis

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 1262

ISBN-13: 0080574556

DOWNLOAD EBOOK

This authoritative book gathers together a broad range of ideas and topics that define the field. It provides clear, concise, and comprehensive coverage of all aspects of cellular physiology from fundamental concepts to more advanced topics. The Third Edition contains substantial new material. Most chapters have been thoroughly reworked. The book includes chapters on important topics such as sensory transduction, the physiology of protozoa and bacteria, the regulation of cell division, and programmed cell death. - Completely revised and updated - includes 8 new chapters on such topics as membrane structure, intracellular chloride regulation, transport, sensory receptors, pressure, and olfactory/taste receptors - Includes broad coverage of both animal and plant cells - Appendixes review basics of the propagation of action potentials, electricity, and cable properties - Authored by leading experts in the field - Clear, concise, comprehensive coverage of all aspects of cellular physiology from fundamental concepts to more advanced topics


Guide to Electroporation and Electrofusion

Guide to Electroporation and Electrofusion

Author: Donald Chang

Publisher: Academic Press

Published: 1991-12-11

Total Pages: 592

ISBN-13: 0323145019

DOWNLOAD EBOOK

Guide to Electroporation and Electrofusion is designed to cover all relevant topics pertaining to both electroporation and electrofusion. Divided into four major parts, the book covers fundamental aspects, as well as more advance aspects of the electroporation-electrofusion relationship. The book first covers the basic principles and fundamentals by presenting the most recent theoretical and experimental studies from various fields, such as physics, chemistry, and biology. Next, the book tackles the applications of electroporation and electrofusion in biology, such as transferring, manipulating, and transforming genetic materials. In the third section, the book discusses experimental protocols to serve as a guide when performing experiments using electroporation and electrofusion. The final section discusses the instruments needed to effectively perform an experiment that involves electroporation and electrofusion. This book will be of great used to both novice and advanced researchers whose work involves electroporation and electrofusion, as it provides comprehensive information regarding these topics.