Big Data and Machine Learning in Quantitative Investment

Big Data and Machine Learning in Quantitative Investment

Author: Tony Guida

Publisher: John Wiley & Sons

Published: 2019-03-25

Total Pages: 308

ISBN-13: 1119522196

DOWNLOAD EBOOK

Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.


Big Data Science in Finance

Big Data Science in Finance

Author: Irene Aldridge

Publisher: John Wiley & Sons

Published: 2021-01-08

Total Pages: 336

ISBN-13: 1119602971

DOWNLOAD EBOOK

Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.


Big Data in Small Business

Big Data in Small Business

Author: Lund Pedersen, Carsten

Publisher: Edward Elgar Publishing

Published: 2021-09-21

Total Pages: 272

ISBN-13: 1839100168

DOWNLOAD EBOOK

This important book considers the ways in which small and medium-sized enterprises (SMEs) can thrive in the age of big data. To address this central issue from multiple viewpoints, the editors introduce a collection of experiences, insights, and guidelines from a variety of expert researchers, each of whom provides a piece to solve this puzzle.


The Routledge Companion to Management Information Systems

The Routledge Companion to Management Information Systems

Author: Robert D. Galliers

Publisher: Routledge

Published: 2017-08-15

Total Pages: 691

ISBN-13: 1317213718

DOWNLOAD EBOOK

The field of Information Systems has been evolving since the first application of computers in organizations in the early 1950s. Focusing on information systems analysis and design up to and including the 1980s, the field has expanded enormously, with our assumptions about information and knowledge being challenged, along with both intended and unintended consequences of information technology. This prestige reference work offers students and researchers a critical reflection on major topics and current scholarship in the evolving field of Information Systems. This single-volume survey of the field is organized into four parts. The first section deals with Disciplinary and Methodological Foundations. The second section deals with Development, Adoption and Use of MIS – topics that formed the centrepiece of the field of IS in the last century. The third section deals with Managing Organizational IS, Knowledge and Innovation, while the final section considers emerging and continuing issues and controversies in the field – IS in Society and a Global Context. Each chapter provides a balanced overview of current knowledge, identifying issues and discussing relevant debates. This prestigious book is required reading for any student or researcher in Management Information Systems, academics and students covering the breadth of the field, and established researchers seeking a single-volume repository on the current state of knowledge, current debates and relevant literature.


New Horizons for a Data-Driven Economy

New Horizons for a Data-Driven Economy

Author: José María Cavanillas

Publisher: Springer

Published: 2016-04-04

Total Pages: 312

ISBN-13: 3319215698

DOWNLOAD EBOOK

In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.


The Elements of Big Data Value

The Elements of Big Data Value

Author: Edward Curry

Publisher: Springer Nature

Published: 2021-08-01

Total Pages: 399

ISBN-13: 3030681769

DOWNLOAD EBOOK

This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.


Data-Driven Investing, + Website

Data-Driven Investing, + Website

Author: Matei Zatreanu

Publisher: Wiley

Published: 2025-04-29

Total Pages: 0

ISBN-13: 9781119429630

DOWNLOAD EBOOK

Implement a data-driven investment strategy The investing landscape is increasingly driven by big data and artificial intelligence. For most finance professionals, big data, statistics, and programming are outside their comfort zone. Yet, proficiency in these areas is becoming a prerequisite for successful investing. And while there are plenty of resources on these individual topics, what is missing is a framework for combining these disciplines for investment purposes. Data-Driven Investing shows readers how investment decisions can be made or improved through the use of alternative datasets and inference techniques. The author covers artificial intelligence algorithms, data visualization, and data sourcing to show how these components come together to form a more robust investment strategy. The goal is to help finance professionals prepare for an investing landscape increasingly driven by big data and artificial intelligence. Shows how investing wisdom can be harnessed through science and augmented by data Demonstrates how an augmented investing philosophy promises a deeper understanding of future economic performance Is essential reading for fund managers, research analysts, quantitative investors, data scientists, and general finance professionals Includes a companion website with code, data sets, and videos providing more in-depth information on augmented/data-driven investing This book comes at a time of increasing investor anxiety with lackluster hedge fund performance, which is causing many funds to explore data-driven investing as a possible evolution of their strategies.


The Book of Alternative Data

The Book of Alternative Data

Author: Alexander Denev

Publisher: John Wiley & Sons

Published: 2020-07-21

Total Pages: 416

ISBN-13: 1119601797

DOWNLOAD EBOOK

The first and only book to systematically address methodologies and processes of leveraging non-traditional information sources in the context of investing and risk management Harnessing non-traditional data sources to generate alpha, analyze markets, and forecast risk is a subject of intense interest for financial professionals. A growing number of regularly-held conferences on alternative data are being established, complemented by an upsurge in new papers on the subject. Alternative data is starting to be steadily incorporated by conventional institutional investors and risk managers throughout the financial world. Methodologies to analyze and extract value from alternative data, guidance on how to source data and integrate data flows within existing systems is currently not treated in literature. Filling this significant gap in knowledge, The Book of Alternative Data is the first and only book to offer a coherent, systematic treatment of the subject. This groundbreaking volume provides readers with a roadmap for navigating the complexities of an array of alternative data sources, and delivers the appropriate techniques to analyze them. The authors—leading experts in financial modeling, machine learning, and quantitative research and analytics—employ a step-by-step approach to guide readers through the dense jungle of generated data. A first-of-its kind treatment of alternative data types, sources, and methodologies, this innovative book: Provides an integrated modeling approach to extract value from multiple types of datasets Treats the processes needed to make alternative data signals operational Helps investors and risk managers rethink how they engage with alternative datasets Features practical use case studies in many different financial markets and real-world techniques Describes how to avoid potential pitfalls and missteps in starting the alternative data journey Explains how to integrate information from different datasets to maximize informational value The Book of Alternative Data is an indispensable resource for anyone wishing to analyze or monetize different non-traditional datasets, including Chief Investment Officers, Chief Risk Officers, risk professionals, investment professionals, traders, economists, and machine learning developers and users.


Business Intelligence Strategy and Big Data Analytics

Business Intelligence Strategy and Big Data Analytics

Author: Steve Williams

Publisher: Morgan Kaufmann

Published: 2016-04-08

Total Pages: 241

ISBN-13: 0128094893

DOWNLOAD EBOOK

Business Intelligence Strategy and Big Data Analytics is written for business leaders, managers, and analysts - people who are involved with advancing the use of BI at their companies or who need to better understand what BI is and how it can be used to improve profitability. It is written from a general management perspective, and it draws on observations at 12 companies whose annual revenues range between $500 million and $20 billion. Over the past 15 years, my company has formulated vendor-neutral business-focused BI strategies and program execution plans in collaboration with manufacturers, distributors, retailers, logistics companies, insurers, investment companies, credit unions, and utilities, among others. It is through these experiences that we have validated business-driven BI strategy formulation methods and identified common enterprise BI program execution challenges. In recent years, terms like "big data and "big data analytics have been introduced into the business and technical lexicon. Upon close examination, the newer terminology is about the same thing that BI has always been about: analyzing the vast amounts of data that companies generate and/or purchase in the course of business as a means of improving profitability and competitiveness. Accordingly, we will use the terms BI and business intelligence throughout the book, and we will discuss the newer concepts like big data as appropriate. More broadly, the goal of this book is to share methods and observations that will help companies achieve BI success and thereby increase revenues, reduce costs, or both. - Provides ideas for improving the business performance of one's company or business functions - Emphasizes proven, practical, step-by-step methods that readers can readily apply in their companies - Includes exercises and case studies with road-tested advice about formulating BI strategies and program plans


Fail Fast, Learn Faster

Fail Fast, Learn Faster

Author: Randy Bean

Publisher: John Wiley & Sons

Published: 2021-08-31

Total Pages: 275

ISBN-13: 1119806224

DOWNLOAD EBOOK

Explore why — now more than ever — the world is in a race to become data-driven, and how you can learn from examples of data-driven leadership in an Age of Disruption, Big Data, and AI In Fail Fast, Learn Faster: Lessons in Data-Driven Leadership in an Age of Disruption, Big Data, and AI, Fortune 1000 strategic advisor, noted author, and distinguished thought leader Randy Bean tells the story of the rise of Big Data and its business impact – its disruptive power, the cultural challenges to becoming data-driven, the importance of data ethics, and the future of data-driven AI. The book looks at the impact of Big Data during a period of explosive information growth, technology advancement, emergence of the Internet and social media, and challenges to accepted notions of data, science, and facts, and asks what it means to become "data-driven." Fail Fast, Learn Faster includes discussions of: The emergence of Big Data and why organizations must become data-driven to survive Why becoming data-driven forces companies to "think different" about their business The state of data in the corporate world today, and the principal challenges Why companies must develop a true "data culture" if they expect to change Examples of companies that are demonstrating data-driven leadership and what we can learn from them Why companies must learn to "fail fast and learn faster" to compete in the years ahead How the Chief Data Officer has been established as a new corporate profession Written for CEOs and Corporate Board Directors, data professional and practitioners at all organizational levels, university executive programs and students entering the data profession, and general readers seeking to understand the Information Age and why data, science, and facts matter in the world in which we live, Fail Fast, Learn Faster p;is essential reading that delivers an urgent message for the business leaders of today and of the future.