Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems

Author: Yaguo Lei

Publisher: Springer Nature

Published: 2022-10-19

Total Pages: 292

ISBN-13: 9811691312

DOWNLOAD EBOOK

This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at present Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis Provides abundant experimental validations and engineering cases of the presented methodologies


Big Data Analytics in Smart Manufacturing

Big Data Analytics in Smart Manufacturing

Author: P Suresh

Publisher: CRC Press

Published: 2022-12-14

Total Pages: 205

ISBN-13: 1000815749

DOWNLOAD EBOOK

The significant objective of this edited book is to bridge the gap between smart manufacturing and big data by exploring the challenges and limitations. Companies employ big data technology in the manufacturing field to acquire data about the products. Manufacturing companies could gain a deep business insight by tracking customer details, monitoring fuel consumption, detecting product defects, and supply chain management. Moreover, the convergence of smart manufacturing and big data analytics currently suffers due to data privacy concern, short of qualified personnel, inadequate investment, long-term storage management of high-quality data. The technological advancement makes the data storage more accessible, cheaper and the convergence of these technologies seems to be more promising in the recent era. This book identified the innovative challenges in the industrial domains by integrating heterogeneous data sources such as structured data, semi-structures data, geo-spatial data, textual information, multimedia data, social networking data, etc. It promotes data-driven business modelling processes by adopting big data technologies in the manufacturing industry. Big data analytics is emerging as a promising discipline in the manufacturing industry to build the rigid industrial data platforms. Moreover, big data facilitates process automation in the complete lifecycle of product design and tracking. This book is an essential guide and reference since it synthesizes interdisciplinary theoretical concepts, definitions, and models, involved in smart manufacturing domain. It also provides real-world scenarios and applications, making it accessible to a wider interdisciplinary audience. Features The readers will get an overview about the smart manufacturing system which enables optimized manufacturing processes and benefits the users by increasing overall profit The researchers will get insight about how the big data technology leverages in finding new associations, factors and patterns through data stream observations in real time smart manufacturing systems The industrialist can get an overview about the detection of defects in design, rapid response to market, innovative products to meet the customer requirement which can benefit their per capita income in better way Discusses technical viewpoints, concepts, theories, and underlying assumptions that are used in smart manufacturing Information delivered in a user-friendly manner for students, researchers, industrial experts, and business innovators, as well as for professionals and practitioners


Intelligent Fault Diagnosis and Health Assessment for Complex Electro-Mechanical Systems

Intelligent Fault Diagnosis and Health Assessment for Complex Electro-Mechanical Systems

Author: Weihua Li

Publisher: Springer Nature

Published: 2023-09-10

Total Pages: 474

ISBN-13: 9819935377

DOWNLOAD EBOOK

Based on AI and machine learning, this book systematically presents the theories and methods for complex electro-mechanical system fault prognosis, intelligent diagnosis, and health state assessment in modern industry. The book emphasizes feature extraction, incipient fault prediction, fault classification, and degradation assessment, which are based on supervised-, semi-supervised-, manifold-, and deep learning; machinery degradation state tracking and prognosis by phase space reconstruction; and complex electro-mechanical system reliability assessment and health maintenance based on running state info. These theories and methods are integrated with practical industrial applications, which can help the readers get into the field more smoothly and provide an important reference for their study, research, and engineering practice.


Applications of Artificial Intelligence in Process Systems Engineering

Applications of Artificial Intelligence in Process Systems Engineering

Author: Jingzheng Ren

Publisher: Elsevier

Published: 2021-06-05

Total Pages: 542

ISBN-13: 012821743X

DOWNLOAD EBOOK

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering


Artificial Intelligence Techniques in Power Systems Operations and Analysis

Artificial Intelligence Techniques in Power Systems Operations and Analysis

Author: Nagendra Singh

Publisher: CRC Press

Published: 2023-08-16

Total Pages: 235

ISBN-13: 1000921786

DOWNLOAD EBOOK

An electrical power system consists of a large number of generation, transmission, and distribution subsystems. It is a very large and complex system; hence, its installation and management are very difficult tasks. An electrical system is essentially a very large network with very large data sets. Handling these data sets can require much time to analyze and subsequently implement. An electrical system is necessary but also potentially very dangerous if not operated and controlled properly. The demand for electricity is ever increasing, so maintaining load demand without overloading the system poses challenges and difficulties. Thus, planning, installing, operating, and controlling such a large system requires new technology. Artificial intelligence (AI) applications have many key features that can support a power system and handle overall power system operations. AI-based applications can manage the large data sets related to a power system. They can also help design power plants, model installation layouts, optimize load dispatch, and quickly respond to control apparatus. These applications and their techniques have been successful in many areas of power system engineering. Artificial Intelligence Techniques in Power Systems Operations and Analysis focuses on the various challenges arising in power systems and how AI techniques help to overcome these challenges. It examines important areas of power system analysis and the implementation of AI-driven analysis techniques. The book helps academicians and researchers understand how AI can be used for more efficient operation. Multiple AI techniques and their application are explained. Also featured are relevant data sets and case studies. Highlights include: Power quality enhancement by PV-UPQC for non-linear load Energy management of a nanogrid through flair of deep learning from IoT environments Role of artificial intelligence and machine learning in power systems with fault detection and diagnosis AC power optimization techniques Artificial intelligence and machine learning techniques in power systems automation


Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery

Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery

Author: Yaguo Lei

Publisher: Butterworth-Heinemann

Published: 2016-11-02

Total Pages: 378

ISBN-13: 0128115351

DOWNLOAD EBOOK

Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery provides a comprehensive introduction of intelligent fault diagnosis and RUL prediction based on the current achievements of the author's research group. The main contents include multi-domain signal processing and feature extraction, intelligent diagnosis models, clustering algorithms, hybrid intelligent diagnosis strategies, and RUL prediction approaches, etc. This book presents fundamental theories and advanced methods of identifying the occurrence, locations, and degrees of faults, and also includes information on how to predict the RUL of rotating machinery. Besides experimental demonstrations, many application cases are presented and illustrated to test the methods mentioned in the book. This valuable reference provides an essential guide on machinery fault diagnosis that helps readers understand basic concepts and fundamental theories. Academic researchers with mechanical engineering or computer science backgrounds, and engineers or practitioners who are in charge of machine safety, operation, and maintenance will find this book very useful. - Provides a detailed background and roadmap of intelligent diagnosis and RUL prediction of rotating machinery, involving fault mechanisms, vibration characteristics, health indicators, and diagnosis and prognostics - Presents basic theories, advanced methods, and the latest contributions in the field of intelligent fault diagnosis and RUL prediction - Includes numerous application cases, and the methods, algorithms, and models introduced in the book are demonstrated by industrial experiences


Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems

Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems

Author: Hasmat Malik

Publisher: Springer Nature

Published: 2020-01-17

Total Pages: 499

ISBN-13: 9811515328

DOWNLOAD EBOOK

This book addresses a range of complex issues associated with condition monitoring (CM), fault diagnosis and detection (FDD) in smart buildings, wide area monitoring (WAM), wind energy conversion systems (WECSs), photovoltaic (PV) systems, structures, electrical systems, mechanical systems, smart grids, etc. The book’s goal is to develop and combine all advanced nonintrusive CMFD approaches on a common platform. To do so, it explores the main components of various systems used for CMFD purposes. The content is divided into three main parts, the first of which provides a brief introduction, before focusing on the state of the art and major research gaps in the area of CMFD. The second part covers the step-by-step implementation of novel soft computing applications in CMFD for electrical and mechanical systems. In the third and final part, the simulation codes for each chapter are included in an extensive appendix to support newcomers to the field.


Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems

Author: Hamid Reza Karimi

Publisher: Academic Press

Published: 2021-06-05

Total Pages: 421

ISBN-13: 0128224886

DOWNLOAD EBOOK

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more. - Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications - Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more - Gives numerical and simulation results in each chapter to reflect engineering practices