Earthquake Engineering

Earthquake Engineering

Author: Charles K. Erdey

Publisher: Wiley

Published: 2007-01-09

Total Pages: 448

ISBN-13: 9780470048436

DOWNLOAD EBOOK

Learn to design code-compliant, earthquake-resistant structures with this practical guide Earthquake Engineering demonstrates how to design structural members and joints for seismic resistance. The text guides readers through dozens of structural designs, documenting how to perform each step, make the necessary calculations, and adhere to relevant design codes. Most other texts on seismic design focus on theory and the construction of idealized structures; this text is a radical departure, presenting actual tested design methodologies that protect structures from the devastation of earthquakes. All the design methods presented by the author comply with the current U.S. building codes. References to these codes are provided throughout the text, helping readers understand how they are integrated into an overall structural design. Everything readers need to create sound designs, from analysis to design implementation, is provided, including: * Dozens of worked problems throughout the text * Complete reference chapters dedicated to matrices, differential equations, and numerical analysis * Latest results of ongoing seismic research, including how these studies are likely to influence future design projects * The latest 2006 IBC, highlighting significant variations from the 2000 and 2003 editions of the code * Detailed coverage of seismic design for steel moment-resisting frame structures (SMRF), as well as braced-frame steel, concrete, masonry, and wood-framed structures This text, with its many worked problems, is ideal for upper-level undergraduates and graduate students. Now that the seismic engineering provisions of the IBC Code apply to the entire United States, this text should also guide practicing engineers not yet exposed to seismic design in designing code-compliant, earthquake-resistant structures.


Fundamentals of Earthquake Engineering

Fundamentals of Earthquake Engineering

Author: Amr Elnashai

Publisher: Wiley

Published: 2008-09-12

Total Pages: 352

ISBN-13: 0470024852

DOWNLOAD EBOOK

Fundamentals of Earthquake Engineering combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas Fundamentals of Earthquake Engineering addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. The book is designed to support graduate teaching and learning, introduce practicing structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies. Fundamentals of Earthquake Engineering includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. The accompanying website at www.wiley.com/go/elnashai contains a comprehensive set of slides illustrating the chapters and appendices. A set of problems with solutions and worked-through examples is available from the Wley Editorial team. The book, slides and problem set constitute a tried and tested system for a single-semester graduate course. The approach taken avoids tying the book to a specific regional seismic design code of practice and ensures its global appeal to graduate students and practicing engineers.


Encyclopedia of Earthquake Engineering

Encyclopedia of Earthquake Engineering

Author: Michael Beer

Publisher: Springer

Published: 2016-01-30

Total Pages: 3953

ISBN-13: 9783642353437

DOWNLOAD EBOOK

The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.


Introduction To Computational Earthquake Engineering (2nd Edition)

Introduction To Computational Earthquake Engineering (2nd Edition)

Author: Muneo Hori

Publisher: World Scientific

Published: 2011-05-18

Total Pages: 438

ISBN-13: 1908978414

DOWNLOAD EBOOK

Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems.


Seismic Analysis of Structures

Seismic Analysis of Structures

Author: T. K. Datta

Publisher: John Wiley & Sons

Published: 2010-03-16

Total Pages: 472

ISBN-13: 047082462X

DOWNLOAD EBOOK

While numerous books have been written on earthquakes, earthquake resistance design, and seismic analysis and design of structures, none have been tailored for advanced students and practitioners, and those who would like to have most of the important aspects of seismic analysis in one place. With this book, readers will gain proficiencies in the following: fundamentals of seismology that all structural engineers must know; various forms of seismic inputs; different types of seismic analysis like, time and frequency domain analyses, spectral analysis of structures for random ground motion, response spectrum method of analysis; equivalent lateral load analysis as given in earthquake codes; inelastic response analysis and the concept of ductility; ground response analysis and seismic soil structure interaction; seismic reliability analysis of structures; and control of seismic response of structures. Provides comprehensive coverage, from seismology to seismic control Contains useful empirical equations often required in the seismic analysis of structures Outlines explicit steps for seismic analysis of MDOF systems with multi support excitations Works through solved problems to illustrate different concepts Makes use of MATLAB, SAP2000 and ABAQUAS in solving example problems of the book Provides numerous exercise problems to aid understanding of the subject As one of the first books to present such a comprehensive treatment of the topic, Seismic Analysis of Structures is ideal for postgraduates and researchers in Earthquake Engineering, Structural Dynamics, and Geotechnical Earthquake Engineering. Developed for classroom use, the book can also be used for advanced undergraduate students planning for a career or further study in the subject area. The book will also better equip structural engineering consultants and practicing engineers in the use of standard software for seismic analysis of buildings, bridges, dams, and towers. Lecture materials for instructors available at www.wiley.com/go/dattaseismic


Earthquake Engineering for Concrete Dams

Earthquake Engineering for Concrete Dams

Author: Anil K. Chopra

Publisher: John Wiley & Sons

Published: 2020-03-16

Total Pages: 313

ISBN-13: 1119056039

DOWNLOAD EBOOK

A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems. Earthquake Engineering for Concrete Dams offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. This important book: Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers, Earthquake Engineering for Concrete Dams offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.


Earthquake Engineering

Earthquake Engineering

Author: Yousef Bozorgnia

Publisher: CRC Press

Published: 2004-05-11

Total Pages: 958

ISBN-13: 0203486242

DOWNLOAD EBOOK

This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res


Drift-Driven Design of Buildings

Drift-Driven Design of Buildings

Author: Santiago Pujol

Publisher: CRC Press

Published: 2022-05-13

Total Pages: 327

ISBN-13: 1000574385

DOWNLOAD EBOOK

This book summarizes the most essential concepts that every engineer designing a new building or evaluating an existing structure should consider in order to control the damage caused by drift (deformation) induced by earthquakes. It presents the work on earthquake engineering done by Dr. Mete Sozen and dozens of his collaborators and students over decades of experimentation, analysis, and reconnaissance. Many of the concepts produced through this work are integral part of earthquake engineering today. Nevertheless, the connection between the concepts in use today and the original sources is not always explained. Drift-Driven Design of Buildings summarizes Sozen's research, provides common language and notation from subject to subject, provides examples and supporting data, and adds historical context as well as class notes that were the result of Sozen’s dedication to teaching. It distills reinforced concrete building design to resist earthquake demands to its essence in a way that no other available book does. The recommendations provided are not only essential but also of the utmost simplicity which is not the result of uninformed neglect of relevant parameters but rather the result of careful consideration and selection of parameters to retain only those that are most critical. Features: Provides the reader with a clear understanding of the essential features that control the seismic response of RC buildings Describes a simple (perhaps the simplest) seismic design method available Includes the underlying hard data to support and explain the methods described Presents decades of work by one of the most prolific and brilliant civil engineers in the United States in the second half of the 20th century Drift-Driven Design of Buildings serves as a useful guide for civil and structural engineering students for self-study or in-class learning, as well as instructors and practicing engineers.