Batteries

Batteries

Author: Subashani Maniam

Publisher: CRC Press

Published: 2024-08-16

Total Pages: 312

ISBN-13: 1040117260

DOWNLOAD EBOOK

Immense efforts are being made to develop efficient energy-storage devices to cater to the constantly increasing energy demand due to population growth. Research is being carried out to explore the various aspects of batteries to increase their energy density, charge storage, and stability. This book discusses in detail the important components of battery development, such as electrodes, electrolytes, active materials, and battery construction. It starts with the advantages and limitations of the hallmark lithium-ion batteries, evolving to the introduction of other metal-based batteries such as zinc-, sodium-, metal–air-, and magnesium-based batteries. It specifically reviews lithium–sulfur batteries, which can produce high energy densities. It subsequently discusses the physics behind the transport dynamics of solid-state polymer electrolytes. It includes redox-active materials, mainly polymers and organic molecules, for further understanding and expanding the options of battery development. It finally analyzes the high dependence of the current technology of batteries on the combination of battery design aspects and renewable electricity sources, which has resulted in regenerative flow batteries. With chapters written by experts in the field, the book covers the recent advances that will be of interest to academics and researchers in the fields of energy storage, electrochemistry, materials development, and sustainable chemistry.


Lithium-Ion Battery Chemistries

Lithium-Ion Battery Chemistries

Author: John T. Warner

Publisher: Elsevier

Published: 2019-05-10

Total Pages: 356

ISBN-13: 0128147792

DOWNLOAD EBOOK

Lithium-Ion Battery Chemistries: A Primer offers a simple description on how different lithium-ion battery chemistries work, along with their differences. It includes a refresher on the basics of electrochemistry and thermodynamics, and an understanding of the fundamental processes that occur in the lithium-ion battery. Furthermore, it reviews each of the major chemistries that are in use today, including Lithium-Iron Phosphate (LFP), Lithium-Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium-Nickel Manganese Cobalt (NMC), Lithium-Nickel Cobalt Aluminium (NCA), and Lithium-Titanate Oxide (LTO) and outlines the different types of anodes, including carbon (graphite, hard carbon, soft carbon, graphene), silicon, and tin. In addition, the book offers performance comparisons of different chemistries to help users select the right battery for the right application and provides explanations on why different chemistries have different performances and capabilities. Finally, it offers a brief look at emerging and beyond-lithium chemistries, including lithium-air, zinc-air, aluminum air, solid-state, lithium-sulfur, lithium-glass, and lithium-metal. Presents a refresher on the basics of electrochemistry and thermodynamics, along with simple graphics and images of complex concepts Provides a clear-and-concise description of lithium-ion chemistries and how they operate Covers the fundamental processes that occur in lithium-ion batteries Includes a detailed review of current and future chemistries


Batteries

Batteries

Author: Stefano Passerini

Publisher: John Wiley & Sons

Published: 2020-07-24

Total Pages: 960

ISBN-13: 3527827307

DOWNLOAD EBOOK

Part of the Encyclopedia of Electrochemistry, this comprehensive, two-volume handbook offers an up-to-date and in-depth review of the battery technologies in use today. It also includes information on the most likely candidates that hold the potential for further enhanced energy and power densities. It contains contributions from a renowned panel of international experts in the field. Batteries are extremely commonplace in modern day life. They provide electrochemically stored energy in the form of electricity to automobiles, aircrafts, electronic devices and to smart power grids. Comprehensive in scope, 'Batteries' covers information on well-established battery technologies such as charge-carrier-based lead acid and lithium ion batteries. The contributors also explore current developments on new technologies such as lithium-sulfur and -oxygen, sodium ion, and full organic batteries. Written for electrochemists, physical chemists, and materials scientists, 'Batteries' is an accessible compendium that offers a thorough review of the most relevant current battery technologies and explores the technology in the years to come.


Electrolytes, Interfaces and Interphases

Electrolytes, Interfaces and Interphases

Author: Kang Xu

Publisher: Royal Society of Chemistry

Published: 2023-04-12

Total Pages: 841

ISBN-13: 1839163100

DOWNLOAD EBOOK

The authoritative textbook for those who want to enter the field of electrochemical energy storage research.


Wearable Energy Storage Devices

Wearable Energy Storage Devices

Author: Allibai Mohanan Vinu Mohan

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-10-25

Total Pages: 160

ISBN-13: 150151492X

DOWNLOAD EBOOK

Flexible and stretchable energy storage devices are increasingly being needed for a wide variety of applications such as wearable electronics, electronic papers, electronic skins, smart clothes, bendable smart phones and implantable medical devices. Wearable Energy Storage Devices discusses flexible and stretchable supercapacitors and batteries, stretchable and self-healing gel electrolytes, and hybrid wearable energy storage-harvesting devices.


Advanced Metal Ion Storage Technologies

Advanced Metal Ion Storage Technologies

Author: Ranjusha Rajagopalan

Publisher: CRC Press

Published: 2023-10-16

Total Pages: 292

ISBN-13: 1000967107

DOWNLOAD EBOOK

This book focusses on the current research on materials for advanced battery technologies and proposes future directions for different types of batteries to meet the current challenges associated with the fuel cell. Furthermore, it provides insights into scientific and practical issues in the development of various batteries like sodium, potassium, zinc, magnesium, aluminum, calcium, and dual metal ion, to bring a new perspective to storage technologies beyond lithium-ion batteries. It introduces different themes of batteries to evaluate the opportunities and challenges of these battery systems from a commercial aspect. Key features: Deals with different potential rechargeable battery systems as suitable substitutes for LIBs Discusses different investigated materials as anode, cathode, and electrolytes for different energy storage systems Provides a complete and comprehensive review of all the existing metal-ion batteries Includes practical challenges and future opportunities of each battery category Reviews commercial aspects of different battery systems This book is aimed at researchers, graduate students, and professionals in industrial and applied chemistry, renewable energy, clean and sustainable processes, chemical engineering, materials science, nanotechnology, and battery chemistry.