Detailed enough to serve as both text and reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams, including stochastic cooling, high-brightness injectors, and the free electron laser. 1990 edition.
From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.
This book compiles state-of-the-art information on the behavior, analysis, and design of concrete beams containing transverse openings. Discussions include the need, effects, and classification of openings as well as the general requirements for fulfilling design pure bending, combined bending, and shear - illustrated with numerical examples torsion alone or in combination with bending and shear large rectangular openings as well as opening size and location on beam behavior methods for analyzing ultimate strength and serviceability requirements effects of torsion in beams large openings in continuous beams and their effects on possible redistribution of internal forces as well as guidelines and procedures for the design of such beams effect of prestressing on the serviceability and strength of beams with web openings design against cracking at openings and ultimate loads Concrete Beams with Openings serves as an invaluable source of information for designers and practicing engineers, especially useful since little or no provision or guidelines are currently available in most building codes.
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It describes the cases of stability in detail, employing all four theories, and provides the readers with practical examples of stochastic stability. Overall, the book succeeds in collecting in one place theoretical analyses, mathematical modeling and validation approaches based on various methods, thus providing the readers with a comprehensive toolkit for performing vibration analysis on complex beam systems.
This Open Access book gives a comprehensive account of both the history and current achievements of molecular beam research. In 1919, Otto Stern launched the revolutionary molecular beam technique. This technique made it possible to send atoms and molecules with well-defined momentum through vacuum and to measure with high accuracy the deflections they underwent when acted upon by transversal forces. These measurements revealed unforeseen quantum properties of nuclei, atoms, and molecules that became the basis for our current understanding of quantum matter. This volume shows that many key areas of modern physics and chemistry owe their beginnings to the seminal molecular beam work of Otto Stern and his school. Written by internationally recognized experts, the contributions in this volume will help experienced researchers and incoming graduate students alike to keep abreast of current developments in molecular beam research as well as to appreciate the history and evolution of this powerful method and the knowledge it reveals.
Creative and forward-thinking design solutions for every room offer readers endless inspiration on how to tackle small spaces while achieving an effortless, Japanese-cool aesthetic. Live Small/Live Modern curates the most envy-inducing spaces pulled from Beams at Home, the interior and lifestyle series that has sold over 70,000 copies and has gained a cult-like following in Japan. Filled with infinite ideas for how to spruce up your home in hip and clever ways, this is an indispensable guide to the Japanese "art of tidying up" in small spaces. Published here for the first time in English, Live Small/Live Modern profiles more than 100 homes--from tiny one-bedroom apartments to high-ceilinged lofts--offering readers a fountain of ideas on how to design, organize, and adorn small spaces without sacrificing personality and style. Over 400 beautiful color photographs showcase the homes of ever-hip people whose honest approach to decorating never fails to exude a laid-back, Japanese-cool style. This book will be loved by dwellers in destinations such as LA, Brooklyn, Tokyo, Portland, and London as well as fans of art, fashion, and design while serving up a major dose of interior design envy.
Random Light Beams: Theory and Applications contemplates the potential in harnessing random light. This book discusses light matter interactions, and concentrates on the various phenomena associated with beam-like fields. It explores natural and man-made light fields and gives an overview of recently introduced families of random light beams. It outlines mathematical tools for analysis, suggests schemes for realization, and discusses possible applications. The book introduces the essential concepts needed for a deeper understanding of the subject, discusses various classes of deterministic paraxial beams and examines random scalar beams. It highlights electromagnetic random beams and matters relating to generation, propagation in free space and various media, and discusses transmission through optical systems. It includes applications that benefit from the use of random beams, as well as the interaction of beams with deterministic optical systems. • Includes detailed mathematical description of different model sources and beams • Explores a wide range of man-made and natural media for beam interaction • Contains more than 100 illustrations on beam behavior • Offers information that is based on the scientific results of the last several years • Points to general methods for dealing with random beams, on the basis of which the readers can do independent research It gives examples of light propagation through the human eye, laser resonators, and negative phase materials. It discusses in detail propagation of random beams in random media, the scattering of random beams from collections of scatterers and thin random layers as well as the possible uses for these beams in imaging, tomography, and smart illumination.
State-of-the-art coverage of modern computational methods for the analysis and design of beams Analysis and Design of Elastic Beams presents computer models and applications related to thin-walled beams such as those used in mechanical and aerospace designs, where thin, lightweight structures with high strength are needed. This book will enable readers to compute the cross-sectional properties of individual beams with arbitrary cross-sectional shapes, to apply a general-purpose computer analysis of a complete structure to determine the forces and moments in the individual members, and to use a unified approach for calculating the normal and shear stresses, as well as deflections, for those members' cross sections. In addition, this book augments a solid foundation in the basic structural design theory of beams by: * Providing coverage of thin-wall structure analysis and optimization techniques * Applying computer numerical methods to classical design methods * Developing computational solutions for cross-sectional properties and stresses using finite element analyses Including access to an associated Web site with software for the analysis and design of any cross-sectional shape, Analysis and Design of Elastic Beams: Computational Methods is an essential reference for mechanical, aerospace, and civil engineers and designers working in the automotive, ship, and aerospace industries in product and process design, machine design, structural design, and design optimization, as well as students and researchers in these areas.
The NATO-sponsored Advanced Research Workshop (ARW) on "Emerging Applications of Vacuum-Arc-Produced Plasma, Ion and Electron Beams" was held at the Baikal Dunes Resort, Lake Baikal, Russia, on June 24-28, 2002. Participants were from NATO countries Belgium, Czech Republic, Germany, Poland, Turkey and the USA, and from NATO partner countries Bulgaria, Russia, Ukraine and Uzbekistan. The goal of the meeting was to bring together researchers involved in novel applications of plasmas and ion/electron beams formed from vacuum arc discharges, especially in less conventional or emerging scientific areas such as new perspectives on vacuum arc phenomena, generation of high charge state metal ions, heavy ion accelerator injection, multi-layer thin film synthesis, biological applications, generation of high-current high-density electron beams, and more. It was our hope that the meeting would engender new research directions and help to establish new collaborations, prompt new thinking for research and technology applications of vacuum arc science, and in general foster development of the field. The Workshop was a great success, as was clearly felt by all of the attendees. The small number of participants at the meeting tended to encourage a high level of closeness and communication between individuals. The location, a small resort on the western side of Lake Baikal in the vicinity of Irkutsk, was ideal - the isolated location, small and quiet, was excellent and was most conducive to discussion among individuals and small groups quite apart from the formal presentations.