This book discusses in detail the basic algorithms of video compression that are widely used in modern video codec. The authors dissect complicated specifications and present material in a way that gets readers quickly up to speed by describing video compression algorithms succinctly, without going to the mathematical details and technical specifications. For accelerated learning, hybrid codec structure, inter- and intra- prediction techniques in MPEG-4, H.264/AVC, and HEVC are discussed together. In addition, the latest research in the fast encoder design for the HEVC and H.264/AVC is also included.
Digital Video Concepts, Methods, and Metrics: Quality, Compression, Performance, and Power Trade-off Analysis is a concise reference for professionals in a wide range of applications and vocations. It focuses on giving the reader mastery over the concepts, methods and metrics of digital video coding, so that readers have sufficient understanding to choose and tune coding parameters for optimum results that would suit their particular needs for quality, compression, speed and power. The practical aspects are many: Uploading video to the Internet is only the beginning of a trend where a consumer controls video quality and speed by trading off various other factors. Open source and proprietary applications such as video e-mail, private party content generation, editing and archiving, and cloud asset management would give further control to the end-user. Digital video is frequently compressed and coded for easier storage and transmission. This process involves visual quality loss due to typical data compression techniques and requires use of high performance computing systems. A careful balance between the amount of compression, the visual quality loss and the coding speed is necessary to keep the total system cost down, while delivering a good user experience for various video applications. At the same time, power consumption optimizations are also essential to get the job done on inexpensive consumer platforms. Trade-offs can be made among these factors, and relevant considerations are particularly important in resource-constrained low power devices. To better understand the trade-offs this book discusses a comprehensive set of engineering principles, strategies, methods and metrics. It also exposes readers to approaches on how to differentiate and rank video coding solutions.
This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.
Proposing the concept of real-world data circulation (RWDC), this book presents various practical and industry-related studies in human, mechanical, and social data domains. RWDC is a new field of study, established by the information technology (IT) community. In the real world, the speed of data transmission between computers surpassed that of human communications long ago and has since expanded exponentially. As a result, the origin of the majority of data has become non-human, mechanical, or natural sources; in fact, humans are merely the source of a small part of the current data explosion. Such expanding data transmission does not simply consist of single source–destination pairs, but actually circulates over a complex network connecting numerous sources and destinations. Such circulation is an important aspect of the underlying systems. Based on this concept, in order to tame and control the massive amount of data originating from non-human sources, the authors have been considering the insertion of acquisition, analysis, and implementation processes in the flow of data circulation. This book introduces the outcome of the RWDC degree program organized at Nagoya University, Japan, collecting contributions from graduate students enrolled in the program from various research fields targeting diverse applications. Through examples of RWDC, the resulting creation of social value is illustrated. This book will be useful not only for those working on the topics discussed, but also to anyone who is interested in RWDC, digital transformation, and Industry 4.0.
A novel and timely primer to the 3DTV system chain from capture to display This book examines all aspects of the 3DTV chain, from capture to display. It helps the reader learn about the key issues for 3DTV technology. It also provides with a systems level appreciation of 3DTV systems, and an understanding of the fundamental principles behind each part of the chain. At the end of each chapter, the author provides resources where readers can learn more about the technology covered (e.g. more focused text books, key journal papers, and key standards contributions). Provides a fundamental and systematic introduction and description of 3DTV key techniques, which build up the whole 3DTV system from capture to consumer viewing at the home. Addresses the quick moving field of 3D displays which is attracting increasing interest from industry and academia. Concepts in the book will be illustrated using diagrams and example images of processed 3D content. The 3D content will be presented as 2D images in the book. Authors to host website providing pointers to more information on the web, freely available tools which would enable readers to experiment with coding video, simulate its transmission over networks, play it back in 3D, and measure the quality and links to important news and developments in the field.
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Workshop on Digital Watermarking, IWDW 2008, held in Busan, Korea, in November 2008. The 36 regular papers included in the volume were carefully reviewed and selected from 62 submissions. Areas of interest to the conference are mathematical modeling of embedding and detection; information theoretic, stochastic aspects of data hiding; security issues, including attacks and counter-attacks; combination of data hiding and cryptography; optimum watermark detection and reliable recovery; estimation of watermark capacity; channel coding techniques for watermarking; large-scale experimental tests and benchmarking; new statistical and perceptual models of content; reversible data hiding; data hiding in special media; data hiding and authentication; steganography and steganalysis; data forensics; copyright protection, DRM, and forensic watermarking; and visual cryptography.
This book presents the state-of-the-art in visual media coding and transmission Visual Media Coding and Transmission is an output of VISNET II NoE, which is an EC IST-FP6 collaborative research project by twelve esteemed institutions from across Europe in the fields of networked audiovisual systems and home platforms. The authors provide information that will be essential for the future study and development of visual media communications technologies. The book contains details of video coding principles, which lead to advanced video coding developments in the form of Scalable Coding, Distributed Video Coding, Non-Normative Video Coding Tools and Transform Based Multi-View Coding. Having detailed the latest work in Visual Media Coding, networking aspects of Video Communication is detailed. Various Wireless Channel Models are presented to form the basis for both link level quality of service (QoS) and cross network transmission of compressed visual data. Finally, Context-Based Visual Media Content Adaptation is discussed with some examples. Key Features: Contains the latest advances in this important field covered by VISNET II NoE Addresses the latest multimedia signal processing and coding algorithms Covers all important advance video coding techniques, scalable and multiple description coding, distributed video coding and non-normative tools Discusses visual media networking with various wireless channel models QoS methods by way of link adaptation techniques are detailed with examples Presents a visual media content adaptation platform, which is both context aware and digital rights management enabled Contains contributions from highly respected academic and industrial organizations Visual Media Coding and Transmission will benefit researchers and engineers in the wireless communications and signal processing fields. It will also be of interest to graduate and PhD students on media processing, coding and communications courses.
The area of video streaming has seen tremendous growth in recent years due to the enhanced processing power, better compression algorithms, and increased bandwidths in emerging networks. Most of the latest communication standards are IP based, whereas the Internet provides only a best-effort service model and the priority-based service models are only gradually being realized for real-time data. Current research attempts to overcome the effects of video packet losses and delays to provide a better user experience. Multimedia communication over wireless channels is especially difficult due to the fact that the channel conditions are generally poor, in addition to the rapid changes that can occur in the channel. Fountain codes can address some of the challenges in this research area, and can also be combined in innovative ways with the different importance classes of compressed video data. Considering the importance of the issues highlighted above, this book focuses on designing error correction techniques to exploit different importance classes in compressed video data for designing adaptive solutions to support multimedia traffic over wireless channels. This book represents a useful reference point for researchers, academics, research students, and industry developers interested in utilizing error correction codes for ensuring better video quality.
Video is the main driver of bandwidth use, accounting for over 80 per cent of consumer Internet traffic. Video compression is a critical component of many of the available multimedia applications, it is necessary for storage or transmission of digital video over today's band-limited networks. The majority of this video is coded using international standards developed in collaboration with ITU-T Study Group and MPEG. The MPEG family of video coding standards begun on the early 1990s with MPEG-1, developed for video and audio storage on CD-ROMs, with support for progressive video. MPEG-2 was standardized in 1995 for applications of video on DVD, standard and high definition television, with support for interlaced and progressive video. MPEG-4 part 2, also known as MPEG-2 video, was standardized in 1999 for applications of low- bit rate multimedia on mobile platforms and the Internet, with the support of object-based or content based coding by modeling the scene as background and foreground. Since MPEG-1, the main video coding standards were based on the so-called macroblocks. However, research groups continued the work beyond the traditional video coding architectures and found that macroblocks could limit the performance of the compression when using high-resolution video. Therefore, in 2013 the high efficiency video coding (HEVC) also known and H.265, was released, with a structure similar to H.264/AVC but using coding units with more flexible partitions than the traditional macroblocks. HEVC has greater flexibility in prediction modes and transform block sizes, also it has a more sophisticated interpolation and de blocking filters. In 2006 the VC-1 was released. VC-1 is a video codec implemented by Microsoft and the Microsoft Windows Media Video (VMW) 9 and standardized by the Society of Motion Picture and Television Engineers (SMPTE). In 2017 the Joint Video Experts Team (JVET) released a call for proposals for a new video coding standard initially called Beyond the HEVC, Future Video Coding (FVC) or known as Versatile Video Coding (VVC). VVC is being built on top of HEVC for application on Standard Dynamic Range (SDR), High Dynamic Range (HDR) and 360° Video. The VVC is planned to be finalized by 2020. This book presents the new VVC, and updates on the HEVC. The book discusses the advances in lossless coding and covers the topic of screen content coding. Technical topics discussed include: Beyond the High Efficiency Video CodingHigh Efficiency Video Coding encoderScreen contentLossless and visually lossless coding algorithmsFast coding algorithmsVisual quality assessmentOther screen content coding algorithmsOverview of JPEG Series
The requirements for multimedia (especially video and audio) communications increase rapidly in the last two decades in broad areas such as television, entertainment, interactive services, telecommunications, conference, medicine, security, business, traffic, defense and banking. Video and audio coding standards play most important roles in multimedia communications. In order to meet these requirements, series of video and audio coding standards have been developed such as MPEG-2, MPEG-4, MPEG-21 for audio and video by ISO/IEC, H.26x for video and G.72x for audio by ITU-T, Video Coder 1 (VC-1) for video by the Society of Motion Picture and Television Engineers (SMPTE) and RealVideo (RV) 9 for video by Real Networks. AVS China is the abbreviation for Audio Video Coding Standard of China. This new standard includes four main technical areas, which are systems, video, audio and digital copyright management (DRM), and some supporting documents such as consistency verification. The second part of the standard known as AVS1-P2 (Video - Jizhun) was approved as the national standard of China in 2006, and several final drafts of the standard have been completed, including AVS1-P1 (System - Broadcast), AVS1-P2 (Video - Zengqiang), AVS1-P3 (Audio - Double track), AVS1-P3 (Audio - 5.1), AVS1-P7 (Mobile Video), AVS-S-P2 (Video) and AVS-S-P3 (Audio). AVS China provides a technical solution for many applications such as digital broadcasting (SDTV and HDTV), high-density storage media, Internet streaming media, and will be used in the domestic IPTV, satellite and possibly the cable TV market. Comparing with other coding standards such as H.264 AVC, the advantages of AVS video standard include similar performance, lower complexity, lower implementation cost and licensing fees. This standard has attracted great deal of attention from industries related to television, multimedia communications and even chip manufacturing from around the world. Also many well known companies have joined the AVS Group to be Full Members or Observing Members. The 163 members of AVS Group include Texas Instruments (TI) Co., Agilent Technologies Co. Ltd., Envivio Inc., NDS, Philips Research East Asia, Aisino Corporation, LG, Alcatel Shanghai Bell Co. Ltd., Nokia (China) Investment (NCIC) Co. Ltd., Sony (China) Ltd., and Toshiba (China) Co. Ltd. as well as some high level universities in China. Thus there is a pressing need from the instructors, students, and engineers for a book dealing with the topic of AVS China and its performance comparisons with similar standards such as H.264, VC-1 and RV-9.