Linear Partial Differential Equations for Scientists and Engineers

Linear Partial Differential Equations for Scientists and Engineers

Author: Tyn Myint-U

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 790

ISBN-13: 0817645608

DOWNLOAD EBOOK

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.


Basic Linear Partial Differential Equations

Basic Linear Partial Differential Equations

Author: Francois Treves

Publisher: Courier Corporation

Published: 2006-11-17

Total Pages: 498

ISBN-13: 0486453464

DOWNLOAD EBOOK

Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories. The four-part treatment covers the basic examples of linear partial differential equations and their fundamental solutions; the Cauchy problem; boundary value problems; and mixed problems and evolution equations. Nearly 400 exercises appear throughout the text, several containing detailed information that enables readers to reconstruct the proofs.


Partial Differential Equations I

Partial Differential Equations I

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 673

ISBN-13: 144197055X

DOWNLOAD EBOOK

The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.


Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 263

ISBN-13: 3540887059

DOWNLOAD EBOOK

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.


Lectures on Linear Partial Differential Equations

Lectures on Linear Partial Differential Equations

Author: Grigoriĭ Ilʹich Eskin

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 432

ISBN-13: 0821852841

DOWNLOAD EBOOK

This is a reader-friendly, relatively short introduction to the modern theory of linear partial differential equations. An effort has been made to present complete proofs in an accessible and self-contained form. The first three chapters are on elementary distribution theory and Sobolev spaces. The following chapters study the Cauchy problem for parabolic and hyperbolic equations, boundary value problems for elliptic equations, heat trace asymptotics, and scattering theory.


Basic Partial Differential Equations

Basic Partial Differential Equations

Author: David. Bleecker

Publisher: CRC Press

Published: 2018-01-18

Total Pages: 974

ISBN-13: 1351086987

DOWNLOAD EBOOK

Methods of solution for partial differential equations (PDEs) used in mathematics, science, and engineering are clarified in this self-contained source. The reader will learn how to use PDEs to predict system behaviour from an initial state of the system and from external influences, and enhance the success of endeavours involving reasonably smooth, predictable changes of measurable quantities. This text enables the reader to not only find solutions of many PDEs, but also to interpret and use these solutions. It offers 6000 exercises ranging from routine to challenging. The palatable, motivated proofs enhance understanding and retention of the material. Topics not usually found in books at this level include but examined in this text: the application of linear and nonlinear first-order PDEs to the evolution of population densities and to traffic shocks convergence of numerical solutions of PDEs and implementation on a computer convergence of Laplace series on spheres quantum mechanics of the hydrogen atom solving PDEs on manifolds The text requires some knowledge of calculus but none on differential equations or linear algebra.


Introduction to Partial Differential Equations with Applications

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou

Publisher: Courier Corporation

Published: 2012-04-20

Total Pages: 434

ISBN-13: 048613217X

DOWNLOAD EBOOK

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.