Parallel Finite Element Computations

Parallel Finite Element Computations

Author: B. H. V. Topping

Publisher:

Published: 1996

Total Pages: 328

ISBN-13:

DOWNLOAD EBOOK

Describing the main procedures for the parallelization of the finite element method for distributed memory architectures, this book is for engineers, computer scientists and mathematicians working on the application of high performance computing to finite element methods. Its procedures are applicable to distributed memory computer architectures.


Computational Science — ICCS 2001

Computational Science — ICCS 2001

Author: Vassil N. Alexandrov

Publisher: Springer

Published: 2003-05-15

Total Pages: 1294

ISBN-13: 3540455450

DOWNLOAD EBOOK

LNCS volumes 2073 and 2074 contain the proceedings of the International Conference on Computational Science, ICCS 2001, held in San Francisco, California, May 27 -31, 2001. The two volumes consist of more than 230 contributed and invited papers that reflect the aims of the conference to bring together researchers and scientists from mathematics and computer science as basic computing disciplines, researchers from various application areas who are pioneering advanced application of computational methods to sciences such as physics, chemistry, life sciences, and engineering, arts and humanitarian fields, along with software developers and vendors, to discuss problems and solutions in the area, to identify new issues, and to shape future directions for research, as well as to help industrial users apply various advanced computational techniques.


Computational Fluid Dynamics on Parallel Systems

Computational Fluid Dynamics on Parallel Systems

Author: Siegfried Wagner

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 205

ISBN-13: 3322894541

DOWNLOAD EBOOK

Within the DFG -Schwerpunktprogramm "Stromungssimulation mit Hochleistungsrechnern" and within the activities of the French-German cooperation of CNRS and DFG a DFG symposium on "Computational Fluid Dynamics (CFD) on Parallel Systems" was organized at the Institut fur Aerodynamik and Gasdynamik of the Stuttgart University, 9-10 December 1993. This symposium was attended by 37 scientists. The scientific program consisted of 18 papers that considered finite element, finite volume and a two step Taylor Galerkin algorithm for the numerical solution of the Euler and Navier-Stokes equations on massively parallel computers with MIMD and SIMD architecture and on work station clusters. Incompressible and compressible, steady and unsteady flows were considered including turbu lent combustion with complex chemistry. Structured and unstructured grids were used. High numerical efficiency was demonstrated by multiplicative, additive and multigrid methods. Shared memory, virtual shared memory and distributed memory systems were investigated, in some cases based on an automatic grid partitioning technique. Various methods for domain decomposition were investigated. The key point of these methods is the resolution of the inter face problem because the matrix involved can be block dense. Multilevel decomposition can be very efficient using multifrontal algorithm. The numerical methods include explicit and implicit schemes. In the latter case the system of equations is often solved by a Gauss -Seidel line re laxation technique.


Optimization of Large Structural Systems

Optimization of Large Structural Systems

Author: George I. N. Rozvany

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 1201

ISBN-13: 9401095779

DOWNLOAD EBOOK

G.I.N. Rozvany ASI Director, Professor of Structural Design, FB 10, Essen University, Essen, Germany Structural optimization deals with the optimal design of all systems that consist, at least partially, of solids and are subject to stresses and deformations. This inte grated discipline plays an increasingly important role in all branches of technology, including aerospace, structural, mechanical, civil and chemical engineering as well as energy generation and building technology. In fact, the design of most man made objects, ranging from space-ships and long-span bridges to tennis rackets and artificial organs, can be improved considerably if human intuition is enhanced by means of computer-aided, systematic decisions. In analysing highly complex structural systems in practice, discretization is un avoidable because closed-form analytical solutions are only available for relatively simple, idealized problems. To keep discretization errors to a minimum, it is de sirable to use a relatively large number of elements. Modern computer technology enables us to analyse systems with many thousand degrees of freedom. In the optimization of structural systems, however, most currently available methods are restricted to at most a few hundred variables or a few hundred active constraints.


Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms

Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms

Author:

Publisher: SIAM

Published: 1994-01-01

Total Pages: 756

ISBN-13: 9780898713299

DOWNLOAD EBOOK

The January 1994 Symposium was jointly sponsored by the ACM Special Interest Group for Automata and Computability Theory and the SIAM Activity Group on Discrete Mathematics. Among the topics in 79 (unrefereed) papers: comparing point sets under projection; on-line search in a simple polygon; low- degree tests; maximal empty ellipsoids; roots of a polynomial and its derivatives; dynamic algebraic algorithms; fast comparison of evolutionary trees; an efficient algorithm for dynamic text editing; and tight bounds for dynamic storage allocation. No index. Annotation copyright by Book News, Inc., Portland, OR


Advances in Time-Domain Computational Electromagnetic Methods

Advances in Time-Domain Computational Electromagnetic Methods

Author: Qiang Ren

Publisher: John Wiley & Sons

Published: 2022-11-15

Total Pages: 724

ISBN-13: 1119808375

DOWNLOAD EBOOK

Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.


High Performance Computing and Applications

High Performance Computing and Applications

Author: Wu Zhang

Publisher: Springer

Published: 2010-03-10

Total Pages: 596

ISBN-13: 3642118429

DOWNLOAD EBOOK

The Second International Conference on High-Performance Computing and Appli- tions (HPCA 2009) was a follow-up event of the successful HPCA 2004. It was held in Shanghai, a beautiful, active, and modern city in China, August 10–12, 2009. It served as a forum to present current work by researchers and software developers from around the world as well as to highlight activities in the high-performance c- puting area. It aimed to bring together research scientists, application pioneers, and software developers to discuss problems and solutions and to identify new issues in this area. This conference emphasized the development and study of novel approaches for high-performance computing, the design and analysis of high-performance - merical algorithms, and their scientific, engineering, and industrial applications. It offered the conference participants a great opportunity to exchange the latest research results, heighten international collaboration, and discuss future research ideas in HPCA. In addition to 24 invited presentations, the conference received over 300 contr- uted submissions from over ten countries and regions worldwide, about 70 of which were accepted for presentation at HPCA 2009. The conference proceedings contain some of the invited presentations and contributed submissions, and cover such research areas of interest as numerical algorithms and solutions, high-performance and grid c- puting, novel approaches to high-performance computing, massive data storage and processing, hardware acceleration, and their wide applications.


Computational Mechanics

Computational Mechanics

Author: Zhenhan Yao

Publisher: Springer Science & Business Media

Published: 2009-03-24

Total Pages: 452

ISBN-13: 3540759999

DOWNLOAD EBOOK

Computational Mechanics is the proceedings of the International Symposium on Computational Mechanics, ISCM 2007. This conference is the first of a series created by a group of prominent scholars from the Mainland of China, Hong Kong, Taiwan, and overseas Chinese, who are very active in the field. The book includes 22 full papers of plenary and semi-plenary lectures and approximately 150 one-page summaries.


Software for Exascale Computing - SPPEXA 2016-2019

Software for Exascale Computing - SPPEXA 2016-2019

Author: Hans-Joachim Bungartz

Publisher: Springer Nature

Published: 2020-07-30

Total Pages: 624

ISBN-13: 3030479560

DOWNLOAD EBOOK

This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.