Band Structure Engineering in Semiconductor Microstructures

Band Structure Engineering in Semiconductor Microstructures

Author: R.A. Abram

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 383

ISBN-13: 1475707703

DOWNLOAD EBOOK

This volume contains the proceedings of the NATO Advanced Research Workshop on Band Structure Engineering in Semiconductor Microstructures held at Il Ciocco, Castelvecchio Pascali in Tuscany between 10th and 15th April 1988. Research on semiconductor microstructures has expanded rapidly in recent years as a result of developments in the semiconductor growth and device fabrication technologies. The emergence of new semiconductor structures has facilitated a number of approaches to producing systems with certain features in their electronic structure which can lead to useful or interesting properties. The interest in band structure engineering has stimd ated a variety of physical investigations and nove 1 device concepts and the field now exhibits a fascinating interplay betwepn pure physics and device technology. Devices based on microstruc tures are useful vehicles for fundamental studies but also new device ideas require a thorough understanding of the basic physics. Around forty researchers gathered at I1 Ciocco in the Spring of 1988 to discuss band structure engineering in semiconductor microstructures.


The Physics of Instabilities in Solid State Electron Devices

The Physics of Instabilities in Solid State Electron Devices

Author: Harold L. Grubin

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 474

ISBN-13: 1489923446

DOWNLOAD EBOOK

The past three decades have been a period where useful current and voltage instabilities in solids have progressed from exciting research problems to a wide variety of commercially available devices. Materials and electronics research has led to devices such as the tunnel (Esaki) diode, transferred electron (Gunn) diode, avalanche diodes, real-space transfer devices, and the like. These structures have proven to be very important in the generation, amplification, switching, and processing of microwave signals up to frequencies exceeding 100 GHz. In this treatise we focus on a detailed theoretical understanding of devices of the kind that can be made unstable against circuit oscillations, large amplitude switching events, and in some cases, internal rearrangement of the electric field or current density distribution. The book is aimed at the semiconductor device physicist, engineer, and graduate student. A knowledge of solid state physics on an elementary or introductory level is assumed. Furthermore, we have geared the book to device engineers and physicists desirous of obtaining an understanding substantially deeper than that associated with a small signal equivalent circuit approach. We focus on both analytical and numerical treatment of specific device problems, concerning ourselves with the mechanism that determines the constitutive relation governing the device, the boundary conditions (contact effects), and the effect of the local circuit environment.


Low-dimensional Semiconductors

Low-dimensional Semiconductors

Author: M. J. Kelly

Publisher: Clarendon Press

Published: 1995-11-23

Total Pages: 569

ISBN-13: 0191590096

DOWNLOAD EBOOK

This text is a first attempt to pull together the whole of semiconductor science and technology since 1970 in so far as semiconductor multilayers are concerned. Material, technology, physics and device issues are described with approximately equal emphasis, and form a single coherant point of view. The subject matter is the concern of over half of today's active semiconductor scientists and technologists, the remainder working on bulk semiconductors and devices. It is now routine to design and the prepare semiconductor multilayers at a time, with independent control over the dropping and composition in each layer. In turn these multilayers can be patterned with features that as a small as a few atomic layers in lateral extent. The resulting structures open up many new ares of exciting solid state and quantum physics. They have also led to whole new generations of electronic and optoelectronic devices whose superior performance relates back to the multilayer structures. The principles established in the field have several decades to go, advancing towards the ultimate of materials engineering, the design and preparation of solids atom by atom. The book should appeal equally to physicists, electronic engineers and materials scientists.


Frontiers of High-Pressure Research

Frontiers of High-Pressure Research

Author: Hans D. Hochheimer

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 481

ISBN-13: 1489924809

DOWNLOAD EBOOK

The role of high pressure experiments in the discovery of supercon ducting materials with a T. above liquid nitrogen temperature has demon strated the importance of such experiments. The same role holds true in the tailoring of materials for optoelectronic devices. In addition, much progress has been made recently in the search for metallic hydro gen, and the application of high pressure in polymer research has brought forth interesting results. These facts together with the suc cess of previous small size meetings (such as the "First International Conference on the Physics of Solids at High Pressure", held in 1965 in Tucson, Arizona, U. S. A. ; "High Pressure and Low Temperature Physics", held in 1977 in Cleveland, Ohio, U. S. A. ; and "Physics of Solids Under High Pressure", held in 1981 in bad Honnef, Germany), motivated us to organize a workshop with emphasis on the newest results and trends in these fields of high pressure research. Furthermore, it was intended to mix experienced and young scien tists to realize an idea best expressed in a letter by Prof. Weinstein: "I think it is an excellent idea. I have often felt that the number of excellent young researchers in the high pressure field need an opportu nity to put forward their work with due recognition. " Thanks to the support of the key speakers, we were able to achieve this goal and had more than 50\ young participants.


Light Scattering in Semiconductor Structures and Superlattices

Light Scattering in Semiconductor Structures and Superlattices

Author: D.J. Lockwood

Publisher: Springer

Published: 2013-12-20

Total Pages: 592

ISBN-13: 1489936955

DOWNLOAD EBOOK

Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.


Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors

Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors

Author: T.C. McGill

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 338

ISBN-13: 146845661X

DOWNLOAD EBOOK

This volume contains the Proceedings of the NATO Advanced Research Workshop on "Growth and Optical Properties of Wide Gap II-VI Low Dimensional Semiconductors", held from 2 - 6 August 1988 in Regensburg, Federal Republic of Germany, under the auspices of the NATO International Scientific Exchange Programme. Semiconducting compounds formed by combining an element from column II of the periodic table with an element from column VI (so called II-VI Semiconductors) have long promised many optoelectronic devices operating in the visible region of the spectrum. However, these materials have encountered numerous problems including: large number of defects and difficulties in obtaining p- and n-type doping. Advances in new methods of material preparation may hold the key to unlocking the unfulfilled promises. During the workshop a full session was taken up covering the prospects for wide-gap II-VI Semiconductor devices, particularly light emitting ones. The growth of bulk materials was reviewed with the view of considering II-VI substrates for the novel epitaxial techniques such as MOCVD, MBE, ALE, MOMBE and ALE-MBE. The controlled introduction of impurities during non-equilibrium growth to provide control of the doping type and conductivity was emphasized.


Semiconductor Superlattices and Interfaces

Semiconductor Superlattices and Interfaces

Author: A. Stella

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 496

ISBN-13: 1483290360

DOWNLOAD EBOOK

This book is concerned with the dynamic field of semiconductor microstructures and interfaces. Several topics in the fundamental properties of interfaces, superlattices and quantum wells are included, as are papers on growth techniques and applications. The papers deal with the interaction of theory, experiments and applications within the field, and the outstanding contributions are from both the academic and industrial worlds.


Advances in Research and Applications: Semiconductor Heterostructures and Nanostructures

Advances in Research and Applications: Semiconductor Heterostructures and Nanostructures

Author:

Publisher: Academic Press

Published: 1991-05-01

Total Pages: 465

ISBN-13: 0080865089

DOWNLOAD EBOOK

The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.


Basic Properties of Semiconductors

Basic Properties of Semiconductors

Author: P.T. Landsberg

Publisher: Elsevier

Published: 2016-04-19

Total Pages: 1219

ISBN-13: 1483291103

DOWNLOAD EBOOK

Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the next two analyze impurities in semiconductors. Then follow chapters on semiconductor statistics and on surfaces, interfaces and band offsets as they occur in heterojunctions. Chapters 8 to 19 report on newer topics (though a survey of transport properties of carriers is also included). Among these are transport of hot electrons, and thermoelectric effects including here and elsewhere properties of low-dimensional and mesoscopic structures. The electron-hole liquid, the quantum Hall effect, localisation, ballistic transport, coherence in superlattices, current ideas on tunnelling and on quantum confinement and scattering processes are also covered.


Point and Extended Defects in Semiconductors

Point and Extended Defects in Semiconductors

Author: Giorgio Benedek

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 286

ISBN-13: 1468457098

DOWNLOAD EBOOK

The systematic study of defects in semiconductors began in the early fifties. FrQm that time on many questions about the defect structure and properties have been an swered, but many others are still a matter of investigation and discussion. Moreover, during these years new problems arose in connection with the identification and char acterization of defects, their role in determining transport and optical properties of semiconductor materials and devices, as well as from the technology of the ever in creasing scale of integration. This book presents to the reader a view into both basic concepts of defect physics and recent developments of high resolution experimental techniques. The book does not aim at an exhaustive presentation of modern defect physics; rather it gathers a number of topics which represent the present-time research in this field. The volume collects the contributions to the Advanced Research Workshop "Point, Extended and Surface Defects in Semiconductors" held at the Ettore Majo rana Centre at Erice (Italy) from 2 to 7 November 1988, in the framework of the International School of Materials Science and Technology. The workshop has brought together scientists from thirteen countries. Most participants are currently working on defect problems in either silicon submicron technology or in quantum wells and superlattices, where point defects, dislocations, interfaces and surfaces are closely packed together.