This book is the first of a set dedicated to the mathematical tools used in partial differential equations derived from physics. Its focus is on normed or semi-normed vector spaces, including the spaces of Banach, Fréchet and Hilbert, with new developments on Neumann spaces, but also on extractable spaces. The author presents the main properties of these spaces, which are useful for the construction of Lebesgue and Sobolev distributions with real or vector values and for solving partial differential equations. Differential calculus is also extended to semi-normed spaces. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students – doctoral students, postgraduate students – engineers and researchers without restricting or generalizing the results.
This book is the second of a set dedicated to the mathematical tools used in partial differential equations derived from physics. It presents the properties of continuous functions, which are useful for solving partial differential equations, and, more particularly, for constructing distributions valued in a Neumann space. The author examines partial derivatives, the construction of primitives, integration and the weighting of value functions in a Neumann space. Many of them are new generalizations of classical properties for values in a Banach space. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students – doctoral students, postgraduate students – engineers and researchers, without restricting or generalizing the results.
This book presents a simple and original theory of distributions, both real and vector, adapted to the study of partial differential equations. It deals with value distributions in a Neumann space, that is, in which any Cauchy suite converges, which encompasses the Banach and Fréchet spaces and the same “weak” spaces. Alongside the usual operations – derivation, product, variable change, variable separation, restriction, extension and regularization – Distributions presents a new operation: weighting. This operation produces properties similar to those of convolution for distributions defined in any open space. Emphasis is placed on the extraction of convergent sub-sequences, the existence and study of primitives and the representation by gradient or by derivatives of continuous functions. Constructive methods are used to make these tools accessible to students and engineers.
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.
Analysis as an independent subject was created as part of the scientific revolution in the seventeenth century. Kepler, Galileo, Descartes, Fermat, Huygens, Newton, and Leibniz, to name but a few, contributed to its genesis. Since the end of the seventeenth century, the historical progress of mathematical analysis has displayed unique vitality and momentum. No other mathematical field has so profoundly influenced the development of modern scientific thinking. Describing this multidimensional historical development requires an in-depth discussion which includes a reconstruction of general trends and an examination of the specific problems. This volume is designed as a collective work of authors who are proven experts in the history of mathematics. It clarifies the conceptual change that analysis underwent during its development while elucidating the influence of specific applications and describing the relevance of biographical and philosophical backgrounds. The first ten chapters of the book outline chronological development and the last three chapters survey the history of differential equations, the calculus of variations, and functional analysis. Special features are a separate chapter on the development of the theory of complex functions in the nineteenth century and two chapters on the influence of physics on analysis. One is about the origins of analytical mechanics, and one treats the development of boundary-value problems of mathematical physics (especially potential theory) in the nineteenth century. The book presents an accurate and very readable account of the history of analysis. Each chapter provides a comprehensive bibliography. Mathematical examples have been carefully chosen so that readers with a modest background in mathematics can follow them. It is suitable for mathematical historians and a general mathematical audience.
This book is the first of a set dedicated to the mathematical tools used in partial differential equations derived from physics. Its focus is on normed or semi-normed vector spaces, including the spaces of Banach, Fréchet and Hilbert, with new developments on Neumann spaces, but also on extractable spaces. The author presents the main properties of these spaces, which are useful for the construction of Lebesgue and Sobolev distributions with real or vector values and for solving partial differential equations. Differential calculus is also extended to semi-normed spaces. Simple methods, semi-norms, sequential properties and others are discussed, making these tools accessible to the greatest number of students – doctoral students, postgraduate students – engineers and researchers without restricting or generalizing the results.
After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.
This book presents the state-of-the-art research on the teaching and learning of linear algebra in the first year of university, in an international perspective. It provides university teachers in charge of linear algebra courses with a wide range of information from works including theoretical and experimental issues.
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.