Mathematical Combinatorics, vol. II, 2015

Mathematical Combinatorics, vol. II, 2015

Author: Linfan Mao

Publisher: Infinite Study

Published:

Total Pages: 154

ISBN-13: 1599733498

DOWNLOAD EBOOK

The Mathematical Combinatorics (International Book Series) is a fully refereed international book series, quarterly comprising 100-150 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences.


International Journal of Mathematical Combinatorics, Volume 2, 2015

International Journal of Mathematical Combinatorics, Volume 2, 2015

Author: Linfan Mao

Publisher: Infinite Study

Published:

Total Pages: 154

ISBN-13:

DOWNLOAD EBOOK

The International J. Mathematical Combinatorics is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences.


International Journal of Mathematical Combinatorics, Volume 2, 2012

International Journal of Mathematical Combinatorics, Volume 2, 2012

Author: Linfan Mao

Publisher: Infinite Study

Published:

Total Pages: 117

ISBN-13:

DOWNLOAD EBOOK

Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces; Smarandache geometries; Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics.


Mathematical Combinatorics: My Philosophy Promoted on Science Internationally

Mathematical Combinatorics: My Philosophy Promoted on Science Internationally

Author: Linfan Mao

Publisher: Infinite Study

Published: 2024-01-01

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

Mathematical science is the human recognition on the evolution laws of things that we can understand with the principle of logical consistency by mathematics, i.e., mathematical reality. So, is the mathematical reality equal to the reality of thing? The answer is not because there always exists contradiction between things in the eyes of human, which is only a local or conditional conclusion. Such a situation enables us to extend the mathematics further by combinatorics for the reality of thing from the local reality and then, to get a combinatorial reality of thing. This is the combinatorial conjecture for mathematical science, i.e., CC conjecture that I put forward in my postdoctoral report for Chinese Acade- my of Sciences in 2005, namely any mathematical science can be reconstructed from or made by combinatorialization. After discovering its relation with Smarandache multi-spaces, it is then be applied to generalize mathematics over 1-dimensional topological graphs, namely the mathematical combinatorics that I promoted on science internationally for more than 20 years. This paper surveys how I proposed this conjecture from combinatorial topology, how to use it for characterizing the non-uniform groups or contradictory systems and furthermore, why I introduce the continuity ow GL as a mathematical element, i.e., vectors in Banach space over topological graphs with operations and then, how to apply it to generalize a few of important conclusions in functional analysis for providing the human recognition on the reality of things, including the subdivision of substance into elementary particles or quarks in theoretical physics with a mathematical supporting.


NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries

NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries

Author: Florentin Smarandache

Publisher: Infinite Study

Published:

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric space, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of only one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom and even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.), and the NeutroAxiom results from the partial negation of one or more axioms [and no total negation of no axiom] from any geometric axiomatic system. Therefore, the NeutroGeometry and AntiGeometry are respectively alternatives and generalizations of the Non-Euclidean Geometries. In the second part, we recall the evolution from Paradoxism to Neutrosophy, then to NeutroAlgebra & AntiAlgebra, afterwards to NeutroGeometry & AntiGeometry, and in general to NeutroStructure & AntiStructure that naturally arise in any field of knowledge. At the end, we present applications of many NeutroStructures in our real world.


Mathematical Combinatorics, Vol. 2/2012

Mathematical Combinatorics, Vol. 2/2012

Author: Linfan Mao

Publisher: Infinite Study

Published:

Total Pages: 117

ISBN-13: 159973186X

DOWNLOAD EBOOK

Papers on Non-Solvable Spaces of Linear Equation Systems, Roman Domination in Complementary Prism Graphs, On Pathos Total Semitotal and Entire Total Block Graph of a Tree, Distance Two Labeling of Generalized Cacti, Degree Splitting Graph on Graceful, Felicitous and Elegant Labeling, and other topics. Contributors: Agboola A.A.A., Adeleke E.O. Akinleye S.A., B.Chaluvaraju, V.Chaitra, P.Selvaraju, P.Balaganesan, J.Renuka, V.Balaj, Suhua Ye, Yizhi Chen, Hui Luo, and others.


MATHEMATICAL REALITY

MATHEMATICAL REALITY

Author: Linfan MAO

Publisher: Infinite Study

Published:

Total Pages: 507

ISBN-13:

DOWNLOAD EBOOK

A thing is complex, and hybrid with other things sometimes. Then, what is the reality of a thing? The reality of a thing is its state of existed, exists, or will exist in the world, independent on the understanding of human beings, which implies that the reality holds on by human beings maybe local or gradual, not the reality of a thing. Hence, to hold on the reality of things is the main objective of science in the history of human development.


Collected Papers. Volume X

Collected Papers. Volume X

Author: Florentin Smarandache

Publisher: Infinite Study

Published: 2022-06-01

Total Pages: 1006

ISBN-13:

DOWNLOAD EBOOK

This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, ‪Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.