Automated Rendezvous and Docking of Spacecraft

Automated Rendezvous and Docking of Spacecraft

Author: Wigbert Fehse

Publisher: Cambridge University Press

Published: 2003-11-13

Total Pages: 517

ISBN-13: 1139440683

DOWNLOAD EBOOK

The definitive reference for space engineers on rendezvous and docking/berthing (RVD/B) related issues, this book answers key questions such as: How does the docking vehicle accurately approach the target spacecraft? What technology is needed aboard the spacecraft to perform automatic rendezvous and docking, and what systems are required by ground control to supervise this process? How can the proper functioning of all rendezvous-related equipment, systems and operations be verified before launch? The book provides an overview of the major issues governing approach and mating strategies, and system concepts for rendezvous and docking/berthing. These issues are described and explained such that aerospace engineers, students and even newcomers to the field can acquire a basic understanding of RVD/B. The author would like to extend his thanks to Dr Shufan Wu, GNC specialist and translator of the book's Chinese edition, for his help in the compilation of these important errata.


Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods

Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods

Author: Yongchun Xie

Publisher: Springer Nature

Published: 2021-02-16

Total Pages: 495

ISBN-13: 9811569908

DOWNLOAD EBOOK

This book focuses on the theory and design methods for guidance, navigation, and control (GNC) in the context of spacecraft rendezvous and docking (RVD). The position and attitude dynamics and kinematics equations for RVD are presented systematically in accordance with several different coordinate systems, including elliptical orbital frame, and recommendations are supplied on which of these equations to use in different phases of RVD. The book subsequently explains the basic principles and relative navigation algorithms of RVD sensors such as GNSS, radar, and camera-type RVD sensors. It also provides guidance algorithms and schemes for different phases of RVD, including the latest research advances in rapid RVD. In turn, the book presents a detailed introduction to intelligent adaptive control and proposes corresponding theoretical approaches to thruster configuration and control allocation for RVD. Emphasis is placed on the design method of active and passive trajectory protection in different phases of RVD, and on the safety design of the RVD mission as a whole. For purposes of verification, the Shenzhou spacecraft’s in-orbit flight mission is introduced as well. All issues addressed are described and explained from basic principles to detailed engineering methods and examples, providing aerospace engineers and students both a basic understanding of, and numerous practical engineering methods for, GNC system design in RVD.


Manned Spacecraft Technologies

Manned Spacecraft Technologies

Author: Hong Yang

Publisher: Springer Nature

Published: 2020-08-26

Total Pages: 355

ISBN-13: 9811548986

DOWNLOAD EBOOK

This book offers essential information on China’s human spacecraft technologies, reviewing their evolution from theoretical and engineering perspectives. It discusses topics such as the design of manned spaceships, cargo spacecraft, space laboratories, space stations and manned lunar and Mars detection spacecraft. It also addresses various key technologies, e.g. for manned rendezvous, docking and reentry. The book is chiefly intended for researchers, graduate students and professionals in the fields of aerospace engineering, control, electronics & electrical engineering, and related areas.


Advances in Guidance, Navigation and Control

Advances in Guidance, Navigation and Control

Author: Liang Yan

Publisher: Springer Nature

Published: 2021-11-12

Total Pages: 5416

ISBN-13: 981158155X

DOWNLOAD EBOOK

This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircraft. It covers a range of topics, including, but not limited to, intelligent computing communication and control; new methods of navigation, estimation, and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation, and control of miniature aircraft; and sensor systems for guidance, navigation, and control. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.


Mir Hardware Heritage

Mir Hardware Heritage

Author: David S. F. Portree

Publisher:

Published: 1995

Total Pages: 226

ISBN-13:

DOWNLOAD EBOOK

The heritage of the major Mir complex hardware elements is described. These elements include Soyuz-TM and Progress-M ; the Kvant, Kvant 2, and Kristall modules ; and the Mir base block. Configuration changes and major mission events of Salyut 6, Salyut 7, and Mir multiport space stations are described in detail for the period 1977-1994. A comparative chronology of U.S. and Soviet/Russian manned spaceflight is also given for that period. The 68 illustrations include comparative scale drawings of U.S. and Russian spacecraft as well as sequential drawings depicting missions and mission events.


NASA Space Technology Roadmaps and Priorities Revisited

NASA Space Technology Roadmaps and Priorities Revisited

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-10-10

Total Pages: 115

ISBN-13: 0309446996

DOWNLOAD EBOOK

Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio. NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA's space technology roadmaps, which are expected to occur every 4 years.