Attractors of Hamiltonian Nonlinear Partial Differential Equations

Attractors of Hamiltonian Nonlinear Partial Differential Equations

Author: Alexander Komech

Publisher: Cambridge University Press

Published: 2021-09-30

Total Pages:

ISBN-13: 100903605X

DOWNLOAD EBOOK

This monograph is the first to present the theory of global attractors of Hamiltonian partial differential equations. A particular focus is placed on the results obtained in the last three decades, with chapters on the global attraction to stationary states, to solitons, and to stationary orbits. The text includes many physically relevant examples and will be of interest to graduate students and researchers in both mathematics and physics. The proofs involve novel applications of methods of harmonic analysis, including Tauberian theorems, Titchmarsh's convolution theorem, and the theory of quasimeasures. As well as the underlying theory, the authors discuss the results of numerical simulations and formulate open problems to prompt further research.


Nonlinear Semigroups, Partial Differential Equations and Attractors

Nonlinear Semigroups, Partial Differential Equations and Attractors

Author: T.L. Gill

Publisher: Springer

Published: 2006-11-15

Total Pages: 194

ISBN-13: 3540477918

DOWNLOAD EBOOK

The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.


Partial Differential Equations and Functional Analysis

Partial Differential Equations and Functional Analysis

Author: Andrew Comech

Publisher: Springer Nature

Published: 2023-11-15

Total Pages: 334

ISBN-13: 303133681X

DOWNLOAD EBOOK

Mark Vishik was one of the prominent figures in the theory of partial differential equations. His ground-breaking contributions were instrumental in integrating the methods of functional analysis into this theory. The book is based on the memoirs of his friends and students, as well as on the recollections of Mark Vishik himself, and contains a detailed description of his biography: childhood in Lwów, his connections with the famous Lwów school of Stefan Banach, a difficult several year long journey from Lwów to Tbilisi after the Nazi assault in June 1941, going to Moscow and forming his own school of differential equations, whose central role was played by the famous Vishik Seminar at the Department of Mechanics and Mathematics at Moscow State University. The reader is introduced to a number of remarkable scientists whose lives intersected with Vishik’s, including S. Banach, J. Schauder, I. N. Vekua, N. I. Muskhelishvili, L. A. Lyusternik, I. G. Petrovskii, S. L. Sobolev, I. M. Gelfand, M. G. Krein, A. N. Kolmogorov, N. I. Akhiezer, J. Leray, J.-L. Lions, L. Schwartz, L. Nirenberg, and many others. The book also provides a detailed description of the main research directions of Mark Vishik written by his students and colleagues, as well as several reviews of the recent development in these directions.


Transcendence and Linear Relations of 1-Periods

Transcendence and Linear Relations of 1-Periods

Author: Annette Huber

Publisher: Cambridge University Press

Published: 2022-05-26

Total Pages: 266

ISBN-13: 1009022717

DOWNLOAD EBOOK

This exploration of the relation between periods and transcendental numbers brings Baker's theory of linear forms in logarithms into its most general framework, the theory of 1-motives. Written by leading experts in the field, it contains original results and finalises the theory of linear relations of 1-periods, answering long-standing questions in transcendence theory. It provides a complete exposition of the new theory for researchers, but also serves as an introduction to transcendence for graduate students and newcomers. It begins with foundational material, including a review of the theory of commutative algebraic groups and the analytic subgroup theorem as well as the basics of singular homology and de Rham cohomology. Part II addresses periods of 1-motives, linking back to classical examples like the transcendence of π, before the authors turn to periods of algebraic varieties in Part III. Finally, Part IV aims at a dimension formula for the space of periods of a 1-motive in terms of its data.


The Mordell Conjecture

The Mordell Conjecture

Author: Hideaki Ikoma

Publisher: Cambridge University Press

Published: 2022-02-03

Total Pages: 180

ISBN-13: 1108998194

DOWNLOAD EBOOK

The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell–Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.


Point-Counting and the Zilber–Pink Conjecture

Point-Counting and the Zilber–Pink Conjecture

Author: Jonathan Pila

Publisher: Cambridge University Press

Published: 2022-06-09

Total Pages: 267

ISBN-13: 1009170325

DOWNLOAD EBOOK

Explores the recent spectacular applications of point-counting in o-minimal structures to functional transcendence and diophantine geometry.


Large Deviations for Markov Chains

Large Deviations for Markov Chains

Author: Alejandro D. de Acosta

Publisher:

Published: 2022-10-12

Total Pages: 264

ISBN-13: 1009063359

DOWNLOAD EBOOK

This book studies the large deviations for empirical measures and vector-valued additive functionals of Markov chains with general state space. Under suitable recurrence conditions, the ergodic theorem for additive functionals of a Markov chain asserts the almost sure convergence of the averages of a real or vector-valued function of the chain to the mean of the function with respect to the invariant distribution. In the case of empirical measures, the ergodic theorem states the almost sure convergence in a suitable sense to the invariant distribution. The large deviation theorems provide precise asymptotic estimates at logarithmic level of the probabilities of deviating from the preponderant behavior asserted by the ergodic theorems.


Families of Varieties of General Type

Families of Varieties of General Type

Author: János Kollár

Publisher: Cambridge University Press

Published: 2023-04-30

Total Pages: 491

ISBN-13: 1009346105

DOWNLOAD EBOOK

The first complete treatment of the moduli theory of varieties of general type, laying foundations for future research.


Fractional Sobolev Spaces and Inequalities

Fractional Sobolev Spaces and Inequalities

Author: D. E. Edmunds

Publisher: Cambridge University Press

Published: 2022-10-31

Total Pages: 169

ISBN-13: 1009254634

DOWNLOAD EBOOK

Provides an account of fractional Sobolev spaces emphasising applications to famous inequalities. Ideal for graduates and researchers.


Variations on a Theme of Borel

Variations on a Theme of Borel

Author: Shmuel Weinberger

Publisher: Cambridge University Press

Published: 2022-11-30

Total Pages: 365

ISBN-13: 1107142598

DOWNLOAD EBOOK

Explains, using examples, the central role of the fundamental group in the geometry, global analysis, and topology of manifolds.