Attractors, Bifurcations, & Chaos

Attractors, Bifurcations, & Chaos

Author: Tönu Puu

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 556

ISBN-13: 3540246991

DOWNLOAD EBOOK

Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.


Attractors, Bifurcations, and Chaos

Attractors, Bifurcations, and Chaos

Author: Tönu Puu

Publisher: Springer

Published: 2014-10-03

Total Pages: 507

ISBN-13: 9783662040959

DOWNLOAD EBOOK

Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.


The Lorenz Equations

The Lorenz Equations

Author: Colin Sparrow

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 280

ISBN-13: 1461257670

DOWNLOAD EBOOK

The equations which we are going to study in these notes were first presented in 1963 by E. N. Lorenz. They define a three-dimensional system of ordinary differential equations that depends on three real positive parameters. As we vary the parameters, we change the behaviour of the flow determined by the equations. For some parameter values, numerically computed solutions of the equations oscillate, apparently forever, in the pseudo-random way we now call "chaotic"; this is the main reason for the immense amount of interest generated by the equations in the eighteen years since Lorenz first presented them. In addition, there are some parameter values for which we see "preturbulence", a phenomenon in which trajectories oscillate chaotically for long periods of time before finally settling down to stable stationary or stable periodic behaviour, others in which we see "intermittent chaos", where trajectories alternate be tween chaotic and apparently stable periodic behaviours, and yet others in which we see "noisy periodicity", where trajectories appear chaotic though they stay very close to a non-stable periodic orbit. Though the Lorenz equations were not much studied in the years be tween 1963 and 1975, the number of man, woman, and computer hours spent on them in recent years - since they came to the general attention of mathematicians and other researchers - must be truly immense.


Attractors, Bifurcations, & Chaos

Attractors, Bifurcations, & Chaos

Author: Tönu Puu

Publisher: Springer Science & Business Media

Published: 2003-07-10

Total Pages: 572

ISBN-13: 9783540402268

DOWNLOAD EBOOK

Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.


Nonlinear Phenomena in Power Electronics

Nonlinear Phenomena in Power Electronics

Author: Soumitro Banerjee

Publisher: Wiley-IEEE Press

Published: 2001-07-16

Total Pages: 480

ISBN-13:

DOWNLOAD EBOOK

Brings the knowledge of 24 experts in this maturing field out from the narrow confines of academic circles, and makes it accessible to graduate students and power electronics professionals alike. * Provides practicing engineers with the knowledge to predict power requirement behavior. * The insights gained from this all-inclusive compilation will ultimately lead to better design methodologies.


Chaos, Bifurcations And Fractals Around Us: A Brief Introduction

Chaos, Bifurcations And Fractals Around Us: A Brief Introduction

Author: Wanda Szemplinska-stupnicka

Publisher: World Scientific

Published: 2003-11-11

Total Pages: 117

ISBN-13: 981448363X

DOWNLOAD EBOOK

During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.


Attractors, Bifurcations, and Chaos

Attractors, Bifurcations, and Chaos

Author: Tönu Puu

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 513

ISBN-13: 3662040948

DOWNLOAD EBOOK

Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.


Global Bifurcations and Chaos

Global Bifurcations and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 505

ISBN-13: 1461210429

DOWNLOAD EBOOK

Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Bifurcation and Chaos in Nonsmooth Mechanical Systems

Bifurcation and Chaos in Nonsmooth Mechanical Systems

Author: Jan Awrejcewicz

Publisher: World Scientific

Published: 2003

Total Pages: 564

ISBN-13: 9812384596

DOWNLOAD EBOOK

This book presents the theoretical frame for studying lumped nonsmooth dynamical systems: the mathematical methods are recalled, and adapted numerical methods are introduced (differential inclusions, maximal monotone operators, Filippov theory, Aizerman theory, etc.). Tools available for the analysis of classical smooth nonlinear dynamics (stability analysis, the Melnikov method, bifurcation scenarios, numerical integrators, solvers, etc.) are extended to the nonsmooth frame. Many models and applications arising from mechanical engineering, electrical circuits, material behavior and civil engineering are investigated to illustrate theoretical and computational developments.