Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters

Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters

Author: J.-J. Yeh

Publisher: Gordon & Breach Science Pub

Published: 1993-01-01

Total Pages: 223

ISBN-13: 9782881245855

DOWNLOAD EBOOK

This book presents the results of atomic calculations of subshell and total photoionization cross-sections and asymmetry parameters as a function of photon energies below 1.5 KeV. The book provides graphical data for the dipole-length approximation and includes ASCII text data on floppy diskettes for all approximations calculated in the same model. The data files may be exported to IBM PC/XT and AT or compatible computers or printers. Installation requires 6Mb of temporary memory. j.J. Yeh, AT&T Bell Laboratories, Murray Hill, New Jersey, USA


Handbook of Theoretical Atomic Physics

Handbook of Theoretical Atomic Physics

Author: Miron Amusia

Publisher: Springer Science & Business Media

Published: 2012-07-23

Total Pages: 806

ISBN-13: 3642247520

DOWNLOAD EBOOK

The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.


Soft X-Rays and Extreme Ultraviolet Radiation

Soft X-Rays and Extreme Ultraviolet Radiation

Author: David Attwood

Publisher: Cambridge University Press

Published: 2007-02-22

Total Pages: 611

ISBN-13: 1139643428

DOWNLOAD EBOOK

This detailed, comprehensive book describes the fundamental properties of soft X-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft X-ray biomicroscopy. The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. The topics covered include spectromicroscopy, EUV astronomy, synchrotron radiation, and soft X-ray lasers. The author also provides a wealth of useful reference material such as electron binding energies, characteristic emission lines and photo-absorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practising engineers involved in semiconductor fabrication and materials science.


X-Rays and Extreme Ultraviolet Radiation

X-Rays and Extreme Ultraviolet Radiation

Author: David Attwood

Publisher: Cambridge University Press

Published: 2017-02-16

Total Pages:

ISBN-13: 1316810666

DOWNLOAD EBOOK

With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.


VUV and Soft X-Ray Photoionization

VUV and Soft X-Ray Photoionization

Author: Uwe Becker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 678

ISBN-13: 146130315X

DOWNLOAD EBOOK

Leading investigators offer the first comprehensive study of gas phase photoionization research in the VUV and soft X-ray regime since the massive employment of synchrotron radiation as a spectroscopic tool. Chapters cover all aspects of photoionization phenomena from total cross sections to highly differentiated measurements such as coincidence experiments and spin-resolved electron spectroscopy. This work is abundant with illustrations.


Author: P.D. Day

Publisher: Royal Society of Chemistry

Published: 1982-01-01

Total Pages: 220

ISBN-13: 0851863019

DOWNLOAD EBOOK

Reflecting the growing volume of published work in this field, researchers will find this book an invaluable source of information on current methods and applications.


Perfect/Complete Scattering Experiments

Perfect/Complete Scattering Experiments

Author: Hans Kleinpoppen

Publisher: Springer Science & Business Media

Published: 2013-12-04

Total Pages: 350

ISBN-13: 3642405142

DOWNLOAD EBOOK

The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The `complete' experiment is, until today, hardly to perform. Therefore, much attention is paid to the results of state-of-the-art experiments providing detailed information on the process, and their comparison to the related theoretical approaches, just to mention relativistic multi-configurational Dirac-Fock, convergent close-coupling, Breit-Pauli R-matrix, or relativistic distorted wave approaches, as well as Green's operator methods. This book has been written in honor of Herbert Walther and his major contribution to the field but even to stimulate advanced Bachelor and Master students by demonstrating that obviously nowadays atomic and molecular scattering physics yields and gives a much exciting appreciation for further advancing the field.