Reference Data on Atoms, Molecules, and Ions

Reference Data on Atoms, Molecules, and Ions

Author: A.A. Radzig

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 475

ISBN-13: 3642820484

DOWNLOAD EBOOK

This reference book contains information about the structure and properties of atomic and molecular particles, as well as some of the nuclear parameters. It includes data which can be of use when studying atomic and molecular processes in the physics of gases, chemistry of gases and gas optics, in plasma physics and plasma chemistry, in physical chemistry and radiation chemistry, in geophysics, astrophysics, solid-state physics and a variety of cross-discipli nary fields of science and technology. Our aim was to collect carefully selected and estimated numerical values for a wide circle of microscopic parameters in a relatively "not thick" book. These values are of constant use in the work of practical investigators. In essence, the book represents a substantially revised and extended edi tion of our reference book published in Russian in 1980. Two main reasons made it necessary to rework the material. On the one hand, a great deal of new high-quality data has appeared in the past few years and furthermore we have enlisted many sources of information previously inaccessible to us. On the other hand, we have tried to insert extensive information on new, rapidly progressing branches of physical research, such as multiply charged ions, Rydberg atoms, van der Waals and excimer molecules, complex ions, etc. All this brings us to the very edge of studies being carried out in the field.


Computation of Atomic and Molecular Processes

Computation of Atomic and Molecular Processes

Author: Miron Ya. Amusia

Publisher: Springer Nature

Published: 2021-12-02

Total Pages: 464

ISBN-13: 3030851435

DOWNLOAD EBOOK

This book presents numerical methods for solving a wide range of problems associated with the structure of atoms and simplest molecules, and their interaction with electromagnetic radiation, electrons, and other particles. It introduces the ATOM-M software package, presenting a unified software suite, written in Fortran, for carrying out precise atomic and molecular numeric calculations. The book shows how to apply these numerical methods to obtain many different characteristics of atoms, molecules, and the various processes within which they interact. In an entirely self-sufficient approach, it teaches the reader how to use the codes provided to build atomic and molecular systems from the ground up and obtain the resulting one-electron wave functions. The computational programs presented and made available in this book allow calculations in the one-electron Hartree–Fock approximation and take into account many-electron correlations within the framework of the random-phase approximation with exchange or many-body perturbation theory. Ideal for scholars interested in numerical computation of atomic and molecular processes, the material presented in this book is useful to both experts and novices, theorists, and experimentalists.


Atomic and Molecular Processes in Fusion Edge Plasmas

Atomic and Molecular Processes in Fusion Edge Plasmas

Author: R.K. Janev

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 509

ISBN-13: 1475793197

DOWNLOAD EBOOK

This well-illustrated resource provides vital cross-section information for the atomic and molecular collision processes taking place in the boundary region of magnetically confined fusion plasmas and in other laboratory and astrophysical low-temperature plasmas. The expertly assessed information in this noteworthy volume includes the most recent experimental and theoretical results presented in a convenient format. Coverage includes the processes of electron-impact excitation and ionization of plasma edge atoms, electron-ion recombination, dissociative collision processes involving electrons and much more.


Fragmentation Processes

Fragmentation Processes

Author: Colm T. Whelan

Publisher: Cambridge University Press

Published: 2012-12-13

Total Pages: 281

ISBN-13: 1107007445

DOWNLOAD EBOOK

The first systematic treatment of fragmentation processes, ideal for graduate students and researchers in atomic collisions, laser physics and chemistry.


Controlling the Quantum World

Controlling the Quantum World

Author: National Research Council

Publisher: National Academies Press

Published: 2007-06-21

Total Pages: 245

ISBN-13: 0309102707

DOWNLOAD EBOOK

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.


Atomic and Molecular Spectroscopy

Atomic and Molecular Spectroscopy

Author: Sune Svanberg

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 418

ISBN-13: 3642973981

DOWNLOAD EBOOK

A wide-ranging review of modern techniques in atomic and molecular spectroscopy. A brief description of atomic and molecular structure is followed by the relevant energy structure expressions. A discussion of radiative properties and the origin of spectra leads into coverage of X-ray and photoelectron spectroscopy, optical spectroscopy, and radiofrequency and microwave techniques. The treatment of laser spectroscopy investigates various tunable sources and a wide range of techniques characterized by high sensitivity and high resolution. Throughout this book, the relation between fundamental and applied aspects is shown, in particular by descriptions of applications to chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophysics.


Elementary Processes in Hydrogen-Helium Plasmas

Elementary Processes in Hydrogen-Helium Plasmas

Author: Ratko K. Janev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 322

ISBN-13: 364271935X

DOWNLOAD EBOOK

Atomic and molecular processes play an important role in laboratory and astrophysical plasmas for a wide range of conditions, and determine, in part, their electrical, transport, thermal, and radiation properties. The study of these and other plasma properties requires a knowledge of the cross sections, reaction rate coefficients, and inelastic energy transfers for a variety of collisional reactions. In this review, we provide quantitative information about the most important collision processes occurring in hy drogen, helium, and hydrogen-helium plasmas in the temperature range from 0. 1 eV to 20 keY. The material presented here is based on published atomic and molecular collision data, theoretical calculations, and appro priate extrapolation and interpolation procedures. This review gives the properties of each reaction, graphs of the cross sections and reaction rate coeffiCients, and the coefficients of analytical fits for these quantities. We present this information in a form that will enable researchers who are not experts in atomic physics to use the data easily. The authors thank their colleagues at the Princeton Plasma Physics Laboratory and in the atomic physics community who have made many useful suggestions for the selection and presentation o. f t. he material. We gratefully acknowledge the excellent technical assistance of Elizabeth Carey for the typing, and Bernie Giehl for the drafting. This work was supported in part by the U. S. Department of Energy Contract No. DE-AC02-76-CHO-3073. Princeton, USA R. K. Janev W. D. Langer September, 1987 K. Evans, Jr. , D. E.


R-Matrix Theory of Atomic Collisions

R-Matrix Theory of Atomic Collisions

Author: Philip George Burke

Publisher: Springer Science & Business Media

Published: 2011-03-28

Total Pages: 750

ISBN-13: 3642159311

DOWNLOAD EBOOK

Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.


Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging

Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging

Author: M. A. Hayat

Publisher: Academic Press

Published: 2016-12-28

Total Pages: 431

ISBN-13: 0128094273

DOWNLOAD EBOOK

Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is an eleven volume series that discusses in detail all aspects of autophagy machinery in the context of health, cancer, and other pathologies. Autophagy maintains homeostasis during starvation or stress conditions by balancing the synthesis of cellular components and their deregulation by autophagy. This series discusses the characterization of autophagosome-enriched vaccines and its efficacy in cancer immunotherapy. Autophagy serves to maintain healthy cells, tissues, and organs, but also promotes cancer survival and growth of established tumors. Impaired or deregulated autophagy can also contribute to disease pathogenesis. Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward-thinking, these books offer a valuable guide to cellular processes while also inciting researchers to explore their potentially important connections. - Presents the most advanced information regarding the role of the autophagic system in life and death - Examines whether autophagy acts fundamentally as a cell survivor or cell death pathway or both - Introduces new, more effective therapeutic strategies in the development of targeted drugs and programmed cell death, providing information that will aid in preventing detrimental inflammation - Features recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, including atherosclerosis and CNS tumors, and their development and treatment - Includes chapters authored by leaders in the field around the globe—the broadest, most expert coverage available