Atlas Pulsed Power System: a Driver for Multi-Megagauss Fields

Atlas Pulsed Power System: a Driver for Multi-Megagauss Fields

Author:

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Atlas is a pulsed power machine designed for hydrodynamic experiments for the Los Alamos High Energy Density Physics Experimental program. It is presently under construction and should be operational in late 2000. Atlas will store 23 MJ at an erected voltage of 240 kV. This will produce a current of 30 MA into a static load and as much as 32 MA into a dynamic load. The current pulse will have a rise time of [approximately]5[micro]s and will produce a magnetic field driving the impactor liner of several hundred Tesla at the target radius of one to two centimeters. The collision can produce shock pressures of [approximately]15 megabars. Design of the pulsed power system will be presented along with data obtained from the Atlas prototype Marx module.


Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics

Author: National Research Council

Publisher: National Academies Press

Published: 2003-05-11

Total Pages: 177

ISBN-13: 030908637X

DOWNLOAD EBOOK

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.


Physics of High-Density Z-Pinch Plasmas

Physics of High-Density Z-Pinch Plasmas

Author: Michael A. Liberman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 285

ISBN-13: 1461214246

DOWNLOAD EBOOK

A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results.


Foundations of Pulsed Power Technology

Foundations of Pulsed Power Technology

Author: Jane Lehr

Publisher: John Wiley & Sons

Published: 2017-07-24

Total Pages: 676

ISBN-13: 111862839X

DOWNLOAD EBOOK

Examines the foundation of pulse power technology in detail to optimize the technology in modern engineering settings Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interference and noise suppression; and EM topology for interference control. In addition, the book: Acts as a reference for practicing engineers as well as a teaching text Features relevant design equations derived from the fundamental concepts in a single reference Contains lucid presentations of the mechanisms of electrical breakdown in gaseous, liquid, solid and vacuum dielectrics Provides extensive illustrations and references Foundations of Pulsed Power Technology will be an invaluable companion for professionals working in the fields of relativistic electron beams, intense bursts of light and heavy ions, flash X-ray systems, pulsed high magnetic fields, ultra-wide band electromagnetics, nuclear electromagnetic pulse simulation, high density fusion plasma, and high energy- rate metal forming techniques.


Introduction to Plasma Physics and Controlled Fusion

Introduction to Plasma Physics and Controlled Fusion

Author: Francis F. Chen

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 427

ISBN-13: 1475755953

DOWNLOAD EBOOK

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.


Development of high-temperature superconductor cables for high direct current applications

Development of high-temperature superconductor cables for high direct current applications

Author: Preuß, Alan

Publisher: KIT Scientific Publishing

Published: 2021-01-14

Total Pages: 194

ISBN-13: 3731510413

DOWNLOAD EBOOK

A design process for HTS DC cables was developed for high current applications. Based on the design process, a 35 kA HTS DC cable demonstrator was developed. The superconducting elements of the demonstrator were manufactured and tested individually at 77 K. Afterwards, the demonstrator cable was assembled and tested at 77 K. The assembled demonstrator successfully reached 35 kA at 77 K and self field conditions.


Explosively Driven Pulsed Power

Explosively Driven Pulsed Power

Author: Andreas A. Neuber

Publisher: Springer Science & Business Media

Published: 2005-11-04

Total Pages: 282

ISBN-13: 354028673X

DOWNLOAD EBOOK

While the basic operating principles of Helical Magnetic Flux Compression Generators are easy to understand, the details of their construction and performance limits have been described only in government reports, many of them classified. Conferences in the field of flux compression are also dominated by contributions from government (US and foreign) laboratories. And the government-sponsored research has usually been concerned with very large generators with explosive charges that require elaborate facilities and safety arrangements. This book emphasizes research into small generators (less than 500 grams of high explosives) and explains in detail the physical fundamentals, construction details, and parameter-variation effects related to them.