The atlas contains an entry for each unique zeolite framework type. The term zeolite framework refers to a corner-sharing network of tetrahedrally coordinated atoms. This 5th edition is again an updated version of the previous compilation, and the number of entries has risen significantly to 133.
Zeolite scientists, whether they are working in synthesis, catalysis, characterization or application development, use the Atlas of Zeolite Framework Types as a reference. It describes the main features of all of the confirmed zeolite framework structures, and gives references to the relevant primary structural literature. Since the last edition 34 more framwork types have been approved and are described in this new edition. A further new feature will be that characteristic building units will be listed for each of the framework types.Zeolites and their analogs are used as desiccants, as water softeners, as shape-selective acid catalysts, as molecular sieves, as concentrators of radioactive isotopes, as blood clotting agents, and even as additives to animal feeds. Recently, their suitability as hosts for nanometer spacing of atomic clusters has also been demonstrated. These diverse applications are a reflection of the fascinating structures of these microporous materials. Each time a new zeolite framework structure is reported, it is examined by the Structure Commission of the International Zeolite Association (IZA-SC), and if it is found to be unique and to conform to the IZA-SC's definition of a zeolite, it is assigned a 3-letter framework type code. This code is part of the official IUPAC nomenclature for microporous materials. The Atlas of Zeolite Framework Types is essentially a compilation of data for each of these confirmed framework types. These data include a stereo drawing showing the framework connectivity, features that characterize the idealized framework structure, a list of materials with this framework type, information on the type material that was used to establish the framework type, and stereo drawings of the pore openings of the type material. - Clear stereo drawings of each of the framework types - Description of the features of the framework type, allowing readers to quickly see if the framework type is suitable to their needs - References to isotypic materials, readers can quickly identify related materials and consult the appropriate reference
Zeolites are the most frequently used industrial catalysts. Their applications range from oil refining, petrochemistry and the synthesis of special chemicals to environmental catalysis. Rapid progress in basic research and the development of new processes has resulted in the first Federation of European Zeolite Associations (FEZA) School on Zeolites. Zeolites and Ordered Mesoporous Materials: Progress and Prospects reflects the programme of the first School on Zeolites, held in Prague on August 20-21, 2005. Readers gain insight into the synthesis of the ever-expanding spectrum of zeolites, zeotypes and ordered mesoporous materials including the use of zeolites and mesoporous materials as catalysts in organic conversions. These range from the fascinating ship-in-bottle systems via cascade reactions to bulk applications in oil-refining and petrochemistry. Contributions from world experts enhance the book, with select chapters on trends in the molecular sieves field, zeolite structures, ion-exchange properties of zeolites, advanced applications (with unique technologies and opportunities) and a chapter on natural zeolites. * Contains contributions from world experts in the field * Includes an account of the frontier topic of high-throughput techniques * Reviews the application of quantum-chemical methods to zeolite science to show the necessity of combining experimental and theoretical approaches
In view of the substantial progress made in the last decade in the fields of zeolites and related materials it was decided to go for an extended 2nd Edition of "Introduction to Zeolite Science and Practice". Unfortunately - as often is the case - this process took more time than expected by the Editors.In the mean time some new texts on zeolites were issued. Nevertheless, the combination of data, discussion and dedication provided by the present book is a unique coverage of the field, in the opinion of the Editors.In the present Edition the number of chapters rose from 16-22. The contributions can be divided into three categories: updated chapters by the original authors, updated chapters by an expanded or new team of authors and completely new chapters. This 2nd Edition also contains new chapters on "Zeolite-based supramolecular assemblies" (by Dirk De Vos and Pierre Jacobs, experts in this area) and on "The use of bulky probe molecules" (by Paul Kunkeler, Roger Downing and one of the Editors).Finally, the super large pore zeolites and the fast growing area of ordered mesoporous materials are dealt with by Eelco Vogt, Charlie Kresge and and Jim Vartuli. The latter two authors belong to the discoverers of the M41S family of mesoporous materials.
The Handbook of Zeolite Science and Technology offers effective analyses ofsalient cases selected expressly for their relevance to current and prospective research. Presenting the principal theoretical and experimental underpinnings of zeolites, this international effort is at once complete and forward-looking, combining fundamental
This 5th edition of the Zeolite Powder Pattern Collection contains calculated patterns of 218 zeolite materials representing 174 framework topologies. The almost exponential growth of new zeolite topologies reflects the continued success of zeolite synthesis researchers in producing novel materials. Collection of Simulated XRD Powder Patterns for Zeolites includes materials of interest to zeolite scientists following the policies established at recent IZA conferences. The materials included have corner-sharing tetrahedral frameworks with no restrictions on chemical composition. - Covers an increase of 41 new topologies since the 4th edition in 2001 - Data collected from diverse literature sources - Represents an extensive compilation of data
Collection of Simulated XRD Powder Patterns for Zeolites serves as a source of reference patterns for pure zeolite phases. The data will be helpful in establishing the structural purity of experimental phases and in indexing their diffraction patterns. The information will also aid in the determination of changes in the lattice parameters with changing composition, assessing preferred orientation effects, background evaluation, and line broadening. Also included are diffraction patterns of several common dense silicate phases to facilitate their detection in mixed phase synthesis.
Zeolite synthesis is an active field of research. As long as this continues, new phases will be discovered and new techniques for preparing existing phases will appear. This edition of Verified Synthesis of Zeolitic Materials contains all the recipes from the first edition plus 24 new recipes. Five new introductory articles have been included plus those from the first edition, some of which have been substantially revised. The XRD patterns have been recorded using different instrument settings from those in the first edition and are intended to conform to typical X-ray diffraction practice. In most cases, only the XRD pattern for the productas synthesised is printed here. The exceptions are those phases which show marked changes in the XRD pattern upon calcination.
Volume 29 of Reviews in Mineralogy provides an updated silica review which focuses on the most recent developments. This book describes the crystal structures and phase transitions of silica and its stuffed derivatives; bridges the relationship between the microstructural character of real silica minerals and the behavior of silica in the geological environment; covers Quantum mechanical considerations of the Si-O bond; shows how calculations based upon first-principles theory can explain and predict silica transitions at high temperatures and pressures; covers spectroscopic analyses of silica and how they reveal vibrational behaviors in response to variations in temperature, pressure, and composition and finally details the uses of silica for industrial purposes.
The present book "Zeolites and Related Materials: Trends, Targets and Challenges" reports the communications that have been presented at the 4th International FEZA (Federation of European Zeolite Associations) Conference in Paris, September 3-6, 2008. It gives an excellent overview of the present state of the art of ordered nanoporous solids including zeolites as well as synthetic layered materials (clays), nanosized molecular sieves, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbons, etc. with emphasis on the synthesis, comprehensive characterization and advanced applications. The significant research activities in this domain are due to the outstanding properties of those nanoporous materials that concentrate the collaborative efforts of researchers from material science, chemistry, physical chemistry and physics.The understanding and development of the unique properties of porous materials relies on a unique blend of multidisciplinary knowledge covering material science, with the implication of organic and colloid chemistry, to prepare micro- and mesoporous materials; surface and adsorption sciences sustained by theory and modelling to understand the peculiar behaviour of molecules in confined systems; special branches of catalysis, physics, chemical engineering and life science to design novel applications. - This book summarizes the developments in the area of nanoporous solids at the dawn of the 21st century, useful for both students/young researchers entering the field of nanoporous materials, as well as for senior scientists - Also summarizes the new family of porous compounds, e.g. MOF's and ordered porous carbon - The present state-of-the-art and prospects of nanoporous solids for advanced applications is discussed