Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains

Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains

Author: Dmitrii Korikov

Publisher: Springer Nature

Published: 2021-04-01

Total Pages: 404

ISBN-13: 3030653722

DOWNLOAD EBOOK

This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.


Analysis of Structures on Elastic Foundation

Analysis of Structures on Elastic Foundation

Author: Levon G. Petrosian

Publisher: CRC Press

Published: 2022-06-12

Total Pages: 571

ISBN-13: 1000585697

DOWNLOAD EBOOK

- Introduces a general approach to the method of integral transforms based on the spectral theory of the linear differential operators. - Presents a new, versatile foundation model with a number of advantages over the ground-based models currently used in practical calculations. - Provides new transforms which will aid in solving various problems relevant to bars, beams, plates, and shells in particular for the structures on elastic foundation. - Examines the methods of solving boundary-value problems typical for structural mechanics and related fields.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1991

Total Pages: 1460

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Evolution Equations, Feshbach Resonances, Singular Hodge Theory

Evolution Equations, Feshbach Resonances, Singular Hodge Theory

Author: Michael Demuth

Publisher: Wiley-VCH

Published: 1999-04-22

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

Evolution equations describe many processes in science and engineering, and they form a central topic in mathematics. The first three contributions to this volume address parabolic evolutionary problems: The opening paper treats asymptotic solutions to singular parabolic problems with distribution and hyperfunction data. The theory of the asymptotic Laplace transform is developed in the second paper and is applied to semigroups generated by operators with large growth of the resolvent. An article follows on solutions by local operator methods of time-dependent singular problems in non-cylindrical domains. The next contribution addresses spectral properties of systems of pseudodifferential operators when the characteristic variety has a conical intersection. Bohr-Sommerfeld quantization rules and first order exponential asymptotics of the resonance widths are established under various semiclassical regimes. In the following article, the limiting absorption principle is proven for certain self-adjoint operators. Applications include Hamiltonians with magnetic fields, Dirac Hamiltonians, and the propagation of waves in inhomogeneous media. The final topic develops Hodge theory on manifolds with edges; its authors introduce a concept of elliptic complexes, prove a Hodge decomposition theorem, and study the asymptotics of harmonic forms.


Free Boundary Problems in Continuum Mechanics

Free Boundary Problems in Continuum Mechanics

Author: Stanislav Nikolaevich Antont︠s︡ev

Publisher: Springer Science & Business Media

Published: 1992

Total Pages: 372

ISBN-13: 9783764327842

DOWNLOAD EBOOK

Some extremum and unilateral boundary value problems in viscous hydrodynamics.- On axisymmetric motion of the fluid with a free surface.- On the occurrence of singularities in axisymmetrical problems of hele-shaw type.- New asymptotic method for solving of mixed boundary value problems.- Some results on the thermistor problem.- New applications of energy methods to parabolic and elliptic free boundary problems.- A localized finite element method for nonlinear water wave problems.- Approximate method of investigation of normal oscillations of viscous incompressible liquid in container.- The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary.- A mathematical model of oscillations energy dissipation of viscous liquid in a tank.- Existence of the classical solution of a two-phase multidimensional Stefan problem on any finite time interval.- Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom.- Multiparametric problems of two-dimensional free boundary seepage.- Nonisothermal two-phase filtration in porous media.- Explicit solution of time-dependent free boundary problems.- Nonequilibrium phase transitions in frozen grounds.- System of variational inequalities arising in nonlinear diffusion with phase change.- Contact viscoelastoplastic problem for a beam.- Application of a finite-element method to two-dimensional contact problems.- Computations of a gas bubble motion in liquid.- Waves on the liquid-gas free surface in the presence of the acoustic field in gas.- Smooth bore in a two-layer fluid.- Numerical calculation of movable free and contact boundaries in problems of dynamic deformation of viscoelastic bodies.- On the canonical variables for two-dimensional vortex hydrodynamics of incompressible fluid.- About the method with regularization for solving the contact problem in elasticity.- Space evolution of tornado-like vortex core.- Optimal shape design for parabolic system and two-phase Stefan problem.- Incompressible fluid flows with free boundary and the methods for their research.- On the Stefan problems for the system of equations arising in the modelling of liquid-phase epitaxy processes.- Stefan problem with surface tension as a limit of the phase field model.- The modelization of transformation phase via the resolution of an inclusion problem with moving boundary.- To the problem of constructing weak solutions in dynamic elastoplasticity.- The justification of the conjugate conditions for the Euler's and Darcy's equations.- On an evolution problem of thermo-capillary convection.- Front tracking methods for one-dimensional moving boundary problems.- On Cauchy problem for long wave equations.- On fixed point (trial) methods for free boundary problems.- Nonlinear theory of dynamics of a viscous fluid with a free boundary in the process of a solid body wetting.


Equilibrium Capillary Surfaces

Equilibrium Capillary Surfaces

Author: Robert Finn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 260

ISBN-13: 1461385849

DOWNLOAD EBOOK

Capillarity phenomena are all about us; anyone who has seen a drop of dew on a plant leaf or the spray from a waterfall has observed them. Apart from their frequently remarked poetic qualities, phenomena of this sort are so familiar as to escape special notice. In this sense the rise of liquid in a narrow tube is a more dramatic event that demands and at first defied explanation; recorded observations of this and similar occur rences can be traced back to times of antiquity, and for lack of expla nation came to be described by words deriving from the Latin word "capillus", meaning hair. It was not until the eighteenth century that an awareness developed that these and many other phenomena are all manifestations of some thing that happens whenever two different materials are situated adjacent to each other and do not mix. If one (at least) of the materials is a fluid, which forms with another fluid (or gas) a free surface interface, then the interface will be referred to as a capillary surface.


The Cahn–Hilliard Equation: Recent Advances and Applications

The Cahn–Hilliard Equation: Recent Advances and Applications

Author: Alain Miranville

Publisher: SIAM

Published: 2019-09-09

Total Pages: 231

ISBN-13: 1611975921

DOWNLOAD EBOOK

This is the first book to present a detailed discussion of both classical and recent results on the popular Cahn–Hilliard equation and some of its variants. The focus is on mathematical analysis of Cahn–Hilliard models, with an emphasis on thermodynamically relevant logarithmic nonlinear terms, for which several questions are still open. Initially proposed in view of applications to materials science, the Cahn–Hilliard equation is now applied in many other areas, including image processing, biology, ecology, astronomy, and chemistry. In particular, the author addresses applications to image inpainting and tumor growth. Many chapters include open problems and directions for future research. The Cahn-Hilliard Equation: Recent Advances and Applications is intended for graduate students and researchers in applied mathematics, especially those interested in phase separation models and their generalizations and applications to other fields. Materials scientists also will find this text of interest.