Asymptotic Behavior of Dynamical and Control Systems under Pertubation and Discretization

Asymptotic Behavior of Dynamical and Control Systems under Pertubation and Discretization

Author: Lars Grüne

Publisher: Springer

Published: 2004-10-19

Total Pages: 241

ISBN-13: 3540367845

DOWNLOAD EBOOK

This book provides an approach to the study of perturbation and discretization effects on the long-time behavior of dynamical and control systems. It analyzes the impact of time and space discretizations on asymptotically stable attracting sets, attractors, asumptotically controllable sets and their respective domains of attractions and reachable sets. Combining robust stability concepts from nonlinear control theory, techniques from optimal control and differential games and methods from nonsmooth analysis, both qualitative and quantitative results are obtained and new algorithms are developed, analyzed and illustrated by examples.


Attractors Under Discretisation

Attractors Under Discretisation

Author: Xiaoying Han

Publisher: Springer

Published: 2017-08-11

Total Pages: 121

ISBN-13: 3319619349

DOWNLOAD EBOOK

This work focuses on the preservation of attractors and saddle points of ordinary differential equations under discretisation. In the 1980s, key results for autonomous ordinary differential equations were obtained – by Beyn for saddle points and by Kloeden & Lorenz for attractors. One-step numerical schemes with a constant step size were considered, so the resulting discrete time dynamical system was also autonomous. One of the aims of this book is to present new findings on the discretisation of dissipative nonautonomous dynamical systems that have been obtained in recent years, and in particular to examine the properties of nonautonomous omega limit sets and their approximations by numerical schemes – results that are also of importance for autonomous systems approximated by a numerical scheme with variable time steps, thus by a discrete time nonautonomous dynamical system.


Stability and Stabilization of Nonlinear Systems

Stability and Stabilization of Nonlinear Systems

Author: Iasson Karafyllis

Publisher: Springer Science & Business Media

Published: 2011-04-02

Total Pages: 401

ISBN-13: 0857295136

DOWNLOAD EBOOK

Recently, the subject of nonlinear control systems analysis has grown rapidly and this book provides a simple and self-contained presentation of their stability and feedback stabilization which enables the reader to learn and understand major techniques used in mathematical control theory. In particular: the important techniques of proving global stability properties are presented closely linked with corresponding methods of nonlinear feedback stabilization; a general framework of methods for proving stability is given, thus allowing the study of a wide class of nonlinear systems, including finite-dimensional systems described by ordinary differential equations, discrete-time systems, systems with delays and sampled-data systems; approaches to the proof of classical global stability properties are extended to non-classical global stability properties such as non-uniform-in-time stability and input-to-output stability; and new tools for stability analysis and control design of a wide class of nonlinear systems are introduced. The presentational emphasis of Stability and Stabilization of Nonlinear Systems is theoretical but the theory’s importance for concrete control problems is highlighted with a chapter specifically dedicated to applications and with numerous illustrative examples. Researchers working on nonlinear control theory will find this monograph of interest while graduate students of systems and control can also gain much insight and assistance from the methods and proofs detailed in this book.


Nonlinear Control of Dynamic Networks

Nonlinear Control of Dynamic Networks

Author: Tengfei Liu

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 345

ISBN-13: 1466584602

DOWNLOAD EBOOK

Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.


Nonlinear Model Predictive Control

Nonlinear Model Predictive Control

Author: Lars Grüne

Publisher: Springer

Published: 2016-11-09

Total Pages: 463

ISBN-13: 3319460242

DOWNLOAD EBOOK

This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. The second edition has been substantially rewritten, edited and updated to reflect the significant advances that have been made since the publication of its predecessor, including: • a new chapter on economic NMPC relaxing the assumption that the running cost penalizes the distance to a pre-defined equilibrium; • a new chapter on distributed NMPC discussing methods which facilitate the control of large-scale systems by splitting up the optimization into smaller subproblems; • an extended discussion of stability and performance using approximate updates rather than full optimization; • replacement of the pivotal sufficient condition for stability without stabilizing terminal conditions with a weaker alternative and inclusion of an alternative and much simpler proof in the analysis; and • further variations and extensions in response to suggestions from readers of the first edition. Though primarily aimed at academic researchers and practitioners working in control and optimization, the text is self-contained, featuring background material on infinite-horizon optimal control and Lyapunov stability theory that also makes it accessible for graduate students in control engineering and applied mathematics.


Positive Systems

Positive Systems

Author: James Lam

Publisher: Springer

Published: 2019-01-12

Total Pages: 331

ISBN-13: 3030043274

DOWNLOAD EBOOK

This book presents high-quality original contributions on positive systems, including those with positivity in compartmental switched systems, Markovian jump systems, Boolean networks, interval observer design, fault detection, and delay systems. It comprises a selection of the best papers from POSTA 2018, the 6th International Conference on Positive Systems, which was held in Hangzhou, China, in August 2018. The POSTA conference series represents a targeted response to the growing need for research that reports on and critically discusses a wide range of topics concerning the theory and applications of positive systems. The book offers valuable insights for researchers in applied mathematics, control theory and their applications.


Tutorials in Mathematical Biosciences IV

Tutorials in Mathematical Biosciences IV

Author: Avner Friedman

Publisher: Springer Science & Business Media

Published: 2007-11-21

Total Pages: 215

ISBN-13: 3540743286

DOWNLOAD EBOOK

This book offers an introduction to fast growing research areas in evolution of species, population genetics, ecological models, and population dynamics. It reviews the concept and methodologies of phylogenetic trees, introduces ecological models, examines a broad range of ongoing research in population dynamics, and deals with gene frequencies under the action of migration and selection. The book features computational schemes, illustrations, and mathematical theorems.


New Trends in Nonlinear Dynamics and Control, and their Applications

New Trends in Nonlinear Dynamics and Control, and their Applications

Author: Wei Kang

Publisher: Springer Science & Business Media

Published: 2003-09-16

Total Pages: 384

ISBN-13: 9783540404743

DOWNLOAD EBOOK

A selection of papers exploring a wide spectrum of new trends in nonlinear dynamics and control, such as bifurcation control, state estimation and reconstruction, analysis of behavior and stabilities, dynamics of nonlinear neural network models, and numerical algorithms. The papers focus on new ideas and the latest developments in both theoretical and applied research topics of nonlinear control. Because many of the authors are leading researchers in their own fields, the papers presented in this volume reflect the state of the art in the areas of nonlinear dynamics and control. Many of the papers in this volume were first presented at the highly succesful ''Symposium on New Trends in Nonlinear Dynamics and Control, and Their Applications,'' held October 18-19, 2002, in Monterey, California.