Assessment of High-Temperature Low-Cycle Fatigue Life of Austenitic Stainless Steels by Using Intergranular Damage as a Correlating Parameter

Assessment of High-Temperature Low-Cycle Fatigue Life of Austenitic Stainless Steels by Using Intergranular Damage as a Correlating Parameter

Author: C. Levaillant

Publisher:

Published: 1982

Total Pages: 25

ISBN-13:

DOWNLOAD EBOOK

Strain-controlled continuous fatigue and creep-fatigue experiments are reported for two types of 316 steel tested at 600°C (1112°F). It is shown that, although the continuous fatigue properties of the two materials are very similar, the one containing a controlled amount of nitrogen exhibits a better creep-fatigue resistance than the other alloy. Detailed measurements of intergranular damage made either on the fracture surfaces or in the bulk of creep-fatigue specimens indicate that the susceptibility of the materials to the effect of tensile hold times can be related to their propensity to intergranular cracking. A stress relaxation-propagation reduction factor per cycle correlation is proposed in order to account for the detrimental effect of tensile hold times on the fatigue life. This correlation relies upon experimental results on austenitic stainless steels published in the literature. It is shown that the proposed approach, derived largely from the quantitative measurement of intergranular damage, holds some promise for predictive purposes.


High Temperature Component Life Assessment

High Temperature Component Life Assessment

Author: G.A. Webster

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 336

ISBN-13: 9401717710

DOWNLOAD EBOOK

The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.


High Temperature Fatigue

High Temperature Fatigue

Author: R.P. Skelton

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 330

ISBN-13: 940093453X

DOWNLOAD EBOOK

About 35 years ago, thermal fatigue was identified as an important phenomenon which limited the lifetime of high temperature plant. In the intervening years many investigations have been carried out, primarily to give guidance on likely endurance (especially in the presence of time dependent deformation) but latterly, with the introduction of sophisticated testing machines, to provide knowledge of the underlying mechanisms of failure. A previous edited book (Fatigue at High Temperature, Elsevier Applied Science Publishers, 1983) summarised the state-of-the-art of high temperature fatigue testing and examined the factors influencing life, such as stress state, environment and microstructural effects. It also considered, in some detail, cyclic crack growth as a more rigorous approach to life limitation. The aim of the present volume (which in style and format follows exactly the same lines as its predecessor) is once again to pursue the desire to translate detailed laboratory knowledge into engineering design and assessment. There is, for example, a need to consider the limitations of the laboratory specimen and its relationship with engineering features. Many design procedures still rely on a simple endurance approach based on failure of a smooth specimen, and this is taken to indicate crack initiation in the component. In this volume, therefore, crack propagation is covered only incidentally, emphasis being placed instead on basic cyclic stress strain properties, non-isothermal behaviour, metallography, failure criteria and the need for agreed testing procedures.


Mechanical Behaviour of Materials at High Temperature

Mechanical Behaviour of Materials at High Temperature

Author: C. Moura Branco

Publisher: Springer Science & Business Media

Published: 1996-06-30

Total Pages: 758

ISBN-13: 9780792341130

DOWNLOAD EBOOK

This volume contains the edited version of lectures and selected research contributions presented at the NATO ADVANCED STUDY INSTITUTE on MECHANICAL BEHA VI OUR OF MATERIALS AT HIGH TEMPERATURE, held in Sesimbra, Portugal, 12th-22nd September 1995, and organized by 1ST-Lisbon Institute of Technology, PortugaL The Institute was attended by 88 participants, including 15 lecturers from 17 countries including five CP countries. The lecturers were leading scientists and technologists from universities, research institutions and industry. The students were mainly young PhD students and junior academic or research staff with postgraduate qualifications (MSc or PhD). Fourteen students were from the five CP countries. The students presented research papers or posters during the Institute reporting the current progress of their research projects. A total of thirty three lectures, ten research papers and fifty posters were presented. This book does not contain the poster presentations and seven research papers were selected for publication. All the sessions were very active and quite extensive discussions on scientific aspects took place during the Institute. The Advanced Study Institute provided a forum for interaction among scientists and engineers from different areas of research, and young researchers.


Theoretical and Applied Mechanics

Theoretical and Applied Mechanics

Author: P. Germain

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 495

ISBN-13: 0444600205

DOWNLOAD EBOOK

Contained in this volume are the full texts of the invited general and sectional lectures presented at this conference. The entire field of mechanics is covered, including analytical, solid and fluid mechanics and their applications. Invited papers on the following topics are also presented: Mechanics of large deformation and damage; The dynamics of two-phase flows; Mechanics of the earth's crust. The papers are written by leading experts and provide a valuable key to the latest and most important developments in various sub-fields of mechanics.


Comprehensive Structural Integrity

Comprehensive Structural Integrity

Author: Ian Milne

Publisher: Elsevier

Published: 2003-07-25

Total Pages: 4647

ISBN-13: 0080490735

DOWNLOAD EBOOK

The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.


Fatigue of Materials and Structures

Fatigue of Materials and Structures

Author: Claude Bathias

Publisher: John Wiley & Sons

Published: 2013-03-04

Total Pages: 279

ISBN-13: 1118617223

DOWNLOAD EBOOK

The design of mechanical structures with predictable and improved durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading researchers in the field, this book, along with the complementary books Fatigue of Materials and Structures: Fundamentals and Application to Damage and Design (both also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. This book deals with multiaxial fatigue, thermomechanical fatigue, fretting-fatigue, influence of defects on fatigue life, cumulative damage and damage tolerance, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of materials science and engineering, mechanical, nuclear and aerospace engineering.