This book constitutes the refereed proceedings of the 9th Dortmund Fuzzy Days, Dortmund, Germany, 2006. This conference has established itself as an international forum for the discussion of new results in the field of Computational Intelligence. The papers presented here, all thoroughly reviewed, are devoted to foundational and practical issues in fuzzy systems, neural networks, evolutionary algorithms, and machine learning and thus cover the whole range of computational intelligence.
Computational Intelligence: Principles, Techniques and Applications presents both theories and applications of computational intelligence in a clear, precise and highly comprehensive style. The textbook addresses the fundamental aspects of fuzzy sets and logic, neural networks, evolutionary computing and belief networks. The application areas include fuzzy databases, fuzzy control, image understanding, expert systems, object recognition, criminal investigation, telecommunication networks, and intelligent robots. The book contains many numerical examples and homework problems with sufficient hints so that the students can solve them on their own.
This volume covers the state-of-the art of the research and development in various aspects of computational intelligence and gives some perspective directions of development. Except the traditional engineering areas that contain theoretical knowledge, applications, designs and projects, the book includes the area of use of computational intelligence in biomedical engineering. „Aspects of Computational Intelligence: Theory and Applications” is a compilation of carefully selected extended papers written on the basis of original contributions presented at the 15th IEEE International Conference on Intelligence Engineering Systems 2011, INES 2011 held at June 23.-26. 2011 in AquaCity Poprad, Slovakia.
This book focuses on computational intelligence techniques and their applications — fast-growing and promising research topics that have drawn a great deal of attention from researchers over the years. It brings together many different aspects of the current research on intelligence technologies such as neural networks, support vector machines, fuzzy logic and evolutionary computation, and covers a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. Fundamental concepts and essential analysis of various computational techniques are presented to offer a systematic and effective tool for better treatment of different applications, and simulation and experimental results are included to illustrate the design procedure and the effectiveness of the approaches./a
This book is an up-to-date collection, in AI and environmental research, related to the project ATLAS. AI is used for gaining an understanding of complex research phenomena in the environmental sciences, encompassing heterogeneous, noisy, inaccurate, uncertain, diverse spatio-temporal data and processes. The first part of the book covers new mathematics in the field of AI: aggregation functions with special classes such as triangular norms and copulas, pseudo-analysis, and the introduction to fuzzy systems and decision making. Generalizations of the Choquet integral with applications in decision making as CPT are presented. The second part of the book is devoted to AI in the geo-referenced air pollutants and meteorological data, image processing, machine learning, neural networks, swarm intelligence, robotics, mental well-being and data entry errors. The book is intended for researchers in AI and experts in environmental sciences as well as for Ph.D. students.
Applications of Computational Intelligence in Multi-Disciplinary Research provides the readers with a comprehensive handbook for applying the powerful principles, concepts, and algorithms of computational intelligence to a wide spectrum of research cases. The book covers the main approaches used in computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods, all of which can be collectively viewed as soft computing. Other key approaches included are swarm intelligence and artificial immune systems. These approaches provide researchers with powerful tools for analysis and problem-solving when data is incomplete and when the problem under consideration is too complex for standard mathematics and the crisp logic approach of Boolean computing. - Provides an overview of the key methods of computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods - Includes case studies and real-world examples of computational intelligence applied in a variety of research topics, including bioinformatics, biomedical engineering, big data analytics, information security, signal processing, machine learning, nanotechnology, and optimization techniques - Presents a thorough technical explanation on how computational intelligence is applied that is suitable for a wide range of multidisciplinary and interdisciplinary research
Offering a wide range of programming examples implemented in MATLAB, Computational Intelligence Paradigms: Theory and Applications Using MATLAB presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and pr
Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.
This book presents a selection of recently developed collective and computational intelligence techniques, which it subsequently applies to energy management problems ranging from performance analysis to economic analysis, and from strategic analysis to operational analysis, with didactic numerical examples. As a form of intelligence emerging from the collaboration and competition of individuals, collective and computational intelligence addresses new methodological, theoretical, and practical aspects of complex energy management problems. The book offers an excellent reference guide for practitioners, researchers, lecturers and postgraduate students pursuing research on intelligence in energy management. The contributing authors are recognized researchers in the energy research field.
Computational Intelligence: Concepts to Implementations provides the most complete and practical coverage of computational intelligence tools and techniques to date. This book integrates various natural and engineering disciplines to establish Computational Intelligence. This is the first comprehensive textbook on the subject, supported with lots of practical examples. It asserts that computational intelligence rests on a foundation of evolutionary computation. This refreshing view has set the book apart from other books on computational intelligence. This book lays emphasis on practical applications and computational tools, which are very useful and important for further development of the computational intelligence field. Focusing on evolutionary computation, neural networks, and fuzzy logic, the authors have constructed an approach to thinking about and working with computational intelligence that has, in their extensive experience, proved highly effective. The book moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific con. It explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation. It details the metrics and analytical tools needed to assess the performance of computational intelligence tools. The book concludes with a series of case studies that illustrate a wide range of successful applications. This book will appeal to professional and academic researchers in computational intelligence applications, tool development, and systems. - Moves clearly and efficiently from concepts and paradigms to algorithms and implementation techniques by focusing, in the early chapters, on the specific concepts and paradigms that inform the authors' methodologies - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation - Details the metrics and analytical tools needed to assess the performance of computational intelligence tools - Concludes with a series of case studies that illustrate a wide range of successful applications - Presents code examples in C and C++ - Provides, at the end of each chapter, review questions and exercises suitable for graduate students, as well as researchers and practitioners engaged in self-study