Artificial Intelligence and Computer Vision

Artificial Intelligence and Computer Vision

Author: Huimin Lu

Publisher: Springer

Published: 2016-11-01

Total Pages: 220

ISBN-13: 3319462458

DOWNLOAD EBOOK

This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.


Artificial Intelligence and Computer Vision

Artificial Intelligence and Computer Vision

Author: Huimin Lu

Publisher: Springer

Published: 2018-06-29

Total Pages: 211

ISBN-13: 9783319834771

DOWNLOAD EBOOK

This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.


Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020)

Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020)

Author: Aboul-Ella Hassanien

Publisher: Springer Nature

Published: 2020-03-23

Total Pages: 880

ISBN-13: 3030442896

DOWNLOAD EBOOK

This book presents the proceedings of the 1st International Conference on Artificial Intelligence and Computer Visions (AICV 2020), which took place in Cairo, Egypt, from April 8 to 10, 2020. This international conference, which highlighted essential research and developments in the fields of artificial intelligence and computer visions, was organized by the Scientific Research Group in Egypt (SRGE). The book is divided into sections, covering the following topics: swarm-based optimization mining and data analysis, deep learning and applications, machine learning and applications, image processing and computer vision, intelligent systems and applications, and intelligent networks.


Practical Machine Learning for Computer Vision

Practical Machine Learning for Computer Vision

Author: Valliappa Lakshmanan

Publisher: "O'Reilly Media, Inc."

Published: 2021-07-21

Total Pages: 481

ISBN-13: 1098102339

DOWNLOAD EBOOK

This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models


Machine Learning in Computer Vision

Machine Learning in Computer Vision

Author: Nicu Sebe

Publisher: Springer Science & Business Media

Published: 2005-10-04

Total Pages: 253

ISBN-13: 1402032757

DOWNLOAD EBOOK

The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.


Challenges and Applications for Implementing Machine Learning in Computer Vision

Challenges and Applications for Implementing Machine Learning in Computer Vision

Author: Kashyap, Ramgopal

Publisher: IGI Global

Published: 2019-10-04

Total Pages: 318

ISBN-13: 1799801845

DOWNLOAD EBOOK

Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.


Three-dimensional Computer Vision

Three-dimensional Computer Vision

Author: Olivier Faugeras

Publisher: MIT Press

Published: 1993

Total Pages: 712

ISBN-13: 9780262061582

DOWNLOAD EBOOK

This monograph by one of the world's leading vision researchers provides a thorough, mathematically rigorous exposition of a broad and vital area in computer vision: the problems and techniques related to three-dimensional (stereo) vision and motion. The emphasis is on using geometry to solve problems in stereo and motion, with examples from navigation and object recognition. Faugeras takes up such important problems in computer vision as projective geometry, camera calibration, edge detection, stereo vision (with many examples on real images), different kinds of representations and transformations (especially 3-D rotations), uncertainty and methods of addressing it, and object representation and recognition. His theoretical account is illustrated with the results of actual working programs.Three-Dimensional Computer Vision proposes solutions to problems arising from a specific robotics scenario in which a system must perceive and act. Moving about an unknown environment, the system has to avoid static and mobile obstacles, build models of objects and places in order to be able to recognize and locate them, and characterize its own motion and that of moving objects, by providing descriptions of the corresponding three-dimensional motions. The ideas generated, however, can be used indifferent settings, resulting in a general book on computer vision that reveals the fascinating relationship of three-dimensional geometry and the imaging process.


Computer Vision

Computer Vision

Author: Simon J. D. Prince

Publisher: Cambridge University Press

Published: 2012-06-18

Total Pages: 599

ISBN-13: 1107011795

DOWNLOAD EBOOK

A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.


Low-Power Computer Vision

Low-Power Computer Vision

Author: George K. Thiruvathukal

Publisher: CRC Press

Published: 2022-02-22

Total Pages: 395

ISBN-13: 1000540960

DOWNLOAD EBOOK

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.


Explainable and Interpretable Models in Computer Vision and Machine Learning

Explainable and Interpretable Models in Computer Vision and Machine Learning

Author: Hugo Jair Escalante

Publisher: Springer

Published: 2018-11-29

Total Pages: 305

ISBN-13: 3319981315

DOWNLOAD EBOOK

This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning. Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision. This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following: · Evaluation and Generalization in Interpretable Machine Learning · Explanation Methods in Deep Learning · Learning Functional Causal Models with Generative Neural Networks · Learning Interpreatable Rules for Multi-Label Classification · Structuring Neural Networks for More Explainable Predictions · Generating Post Hoc Rationales of Deep Visual Classification Decisions · Ensembling Visual Explanations · Explainable Deep Driving by Visualizing Causal Attention · Interdisciplinary Perspective on Algorithmic Job Candidate Search · Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions · Inherent Explainability Pattern Theory-based Video Event Interpretations