Artificial Intelligence

Artificial Intelligence

Author: Nils J. Nilsson

Publisher: Morgan Kaufmann

Published: 1998

Total Pages: 536

ISBN-13: 1558605355

DOWNLOAD EBOOK

This new book, by one of the most respected researchers in Artificial Intelligence, features a radical new 'evolutionary' organization that begins with low level intelligent behavior and develops complex intelligence as the book progresses.


Artificial Intelligence: A New Synthesis

Artificial Intelligence: A New Synthesis

Author: Nils J. Nilsson

Publisher: Elsevier

Published: 1998-04-17

Total Pages: 536

ISBN-13: 0080948340

DOWNLOAD EBOOK

Intelligent agents are employed as the central characters in this introductory text. Beginning with elementary reactive agents, Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI. Neural networks, genetic programming, computer vision, heuristic search, knowledge representation and reasoning, Bayes networks, planning, and language understanding are each revealed through the growing capabilities of these agents. A distinguishing feature of this text is in its evolutionary approach to the study of AI. This book provides a refreshing and motivating synthesis of the field by one of AI's master expositors and leading researches. - An evolutionary approach provides a unifying theme - Thorough coverage of important AI ideas, old and new - Frequent use of examples and illustrative diagrams - Extensive coverage of machine learning methods throughout the text - Citations to over 500 references - Comprehensive index


Artificial Intelligence

Artificial Intelligence

Author: Nils J. Nilsson

Publisher: Morgan Kaufmann

Published: 1998-04

Total Pages: 537

ISBN-13: 1558604677

DOWNLOAD EBOOK

Nilsson employs increasingly capable intelligent agents in an evolutionary approach--a novel perspective from which to view and teach topics in artificial intelligence.


Artificial Intelligence

Artificial Intelligence

Author: Nils J. Nilsson

Publisher: Elsevier

Published: 1998-04-17

Total Pages: 605

ISBN-13: 0080499457

DOWNLOAD EBOOK

Intelligent agents are employed as the central characters in this new introductory text. Beginning with elementary reactive agents, Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI. Neural networks, genetic programming, computer vision, heuristic search, knowledge representation and reasoning, Bayes networks, planning, and language understanding are each revealed through the growing capabilities of these agents. The book provides a refreshing and motivating new synthesis of the field by one of AI's master expositors and leading researchers. Artificial Intelligence: A New Synthesis takes the reader on a complete tour of this intriguing new world of AI. - An evolutionary approach provides a unifying theme - Thorough coverage of important AI ideas, old and new - Frequent use of examples and illustrative diagrams - Extensive coverage of machine learning methods throughout the text - Citations to over 500 references - Comprehensive index


Attachment and Bonding

Attachment and Bonding

Author: Carol Sue Carter

Publisher: MIT Press

Published: 2005

Total Pages: 509

ISBN-13: 0262033488

DOWNLOAD EBOOK

Scientists from different disciplines, including anthropology, psychology, psychiatry, pediatrics, neurobiology, endocrinology, and molecular biology, explore the concepts of attachment and bonding from varying scientific perspectives.


Active Learning

Active Learning

Author: Burr Chen

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 100

ISBN-13: 3031015606

DOWNLOAD EBOOK

The key idea behind active learning is that a machine learning algorithm can perform better with less training if it is allowed to choose the data from which it learns. An active learner may pose "queries," usually in the form of unlabeled data instances to be labeled by an "oracle" (e.g., a human annotator) that already understands the nature of the problem. This sort of approach is well-motivated in many modern machine learning and data mining applications, where unlabeled data may be abundant or easy to come by, but training labels are difficult, time-consuming, or expensive to obtain. This book is a general introduction to active learning. It outlines several scenarios in which queries might be formulated, and details many query selection algorithms which have been organized into four broad categories, or "query selection frameworks." We also touch on some of the theoretical foundations of active learning, and conclude with an overview of the strengths and weaknesses of these approaches in practice, including a summary of ongoing work to address these open challenges and opportunities. Table of Contents: Automating Inquiry / Uncertainty Sampling / Searching Through the Hypothesis Space / Minimizing Expected Error and Variance / Exploiting Structure in Data / Theory / Practical Considerations


Statistical Relational Artificial Intelligence

Statistical Relational Artificial Intelligence

Author: Luc De Raedt

Publisher: Morgan & Claypool Publishers

Published: 2016-03-24

Total Pages: 191

ISBN-13: 1627058427

DOWNLOAD EBOOK

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.


Lifelong Machine Learning, Second Edition

Lifelong Machine Learning, Second Edition

Author: Zhiyuan Sun

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 187

ISBN-13: 3031015819

DOWNLOAD EBOOK

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.


Artificial Life IV

Artificial Life IV

Author: Rodney Allen Brooks

Publisher: MIT Press

Published: 1994

Total Pages: 462

ISBN-13: 9780262521901

DOWNLOAD EBOOK

This book brings together contributions to the Fourth Artificial Life Workshop, held at the Massachusetts Institute of Technology in the summer of 1994.


Synthetic Data for Deep Learning

Synthetic Data for Deep Learning

Author: Sergey I. Nikolenko

Publisher: Springer Nature

Published: 2021-06-26

Total Pages: 348

ISBN-13: 3030751783

DOWNLOAD EBOOK

This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field. In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs. The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.