Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.
This is the first comprehensive introduction to multiagent systems and contemporary distributed artificial intelligence that is suitable as a textbook.
This edited book explores the many interesting questions that lie at the intersection between AI and HCI. It covers a comprehensive set of perspectives, methods and projects that present the challenges and opportunities that modern AI methods bring to HCI researchers and practitioners. The chapters take a clear departure from traditional HCI methods and leverage data-driven and deep learning methods to tackle HCI problems that were previously challenging or impossible to address. It starts with addressing classic HCI topics, including human behaviour modeling and input, and then dedicates a section to data and tools, two technical pillars of modern AI methods. These chapters exemplify how state-of-the-art deep learning methods infuse new directions and allow researchers to tackle long standing and newly emerging HCI problems alike. Artificial Intelligence for Human Computer Interaction: A Modern Approach concludes with a section on Specific Domains which covers a set of emerging HCI areas where modern AI methods start to show real impact, such as personalized medical, design, and UI automation.
Like Mooki, the hero of Spike Lee's film Do the Right Thing artificially, intelligent systems have a hard time knowing what to do in all circumstances. Classical theories of perfect rationality prescribe the right thing for any occasion, but no finite agent can compute their prescriptions fast enough. In Do the Right Thing, the authors argue that a new theoretical foundation for artificial intelligence can be constructed in which rationality is a property of programs within a finite architecture, and their behaviour over time in the task environment, rather than a property of individual decisions.
In this international collection of papers there is a wealth of knowledge on artificial intelligence (AI) and cognitive science (CS) techniques applied to the problem of providing help systems mainly for the UNIX operating system. The research described here involves the representation of technical computer concepts, but also the representation of how users conceptualise such concepts. The collection looks at computational models and systems such as UC, Yucca, and OSCON programmed in languages such as Lisp, Prolog, OPS-5, and C which have been developed to provide UNIX help. These systems range from being menu-based to ones with natural language interfaces, some providing active help, intervening when they believe the user to have misconceptions, and some based on empirical studies of what users actually do while using UNIX. Further papers investigate planning and knowledge representation where the focus is on discovering what the user wants to do, and figuring out a way to do it, as well as representing the knowledge needed to do so. There is a significant focus on natural language dialogue where consultation systems can become active, incorporating user modfelling, natural language generation and plan recognition, modelling metaphors, and users' mistaken beliefs. Much can be learned from seeing how AI and CS techniques can be investigated in depth while being applied to a real test-bed domain such as help on UNIX.
A leading artificial intelligence researcher lays out a new approach to AI that will enable people to coexist successfully with increasingly intelligent machines.
Artificial intelligence is growing field of information technology. It has transformed the world we will in. It has made the world more accessible, more social, more advanced and is developing the globe at a rapid speed. It has enabled human beings to study the minute and intricate concepts of science, has facilitated us to create better and much advanced machinery for medical and business purposes. This book contains the topics of utmost important topics with regard to artificial intelligence. It aims to provide thorough insights into this subject and give detailed information about the various uses and methods applied in this area. As this field is emerging at a rapid pace, the contents of this text will help the readers understand the modern concepts and applications of the subject.
This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.