Armchair Chemistry

Armchair Chemistry

Author: David Bradley

Publisher: Chartwell Books

Published: 2018-02-13

Total Pages: 179

ISBN-13: 0785835962

DOWNLOAD EBOOK

Part of the Armchair series, Armchair Chemistry is a quick refresher course in how we survey of the science. It explains how we evolved from believing in alchemy to discovering modern chemical equations and goes into detail about the lives of the scientists that uncovered them. Fascinating and interactive, this is ideal for the student brushing up on a subject or for as a clear and accessible companion for beginner's and experts alike. It contains explanations of different chemical concepts, as well as profiles of key scientists and and their discoveries. It contains clear and concise explanations of different chemical concepts, as well as profiles of key scientists and their discoveries. A unique feature of the book is its simple, step-by-step exercises. Some of these have everyday applications, others are theoretical puzzles, but all are designed to challenge you and test your newly acquired knowledge. The perfect companion for beginners and experts alike, Armchair Chemistry does not assume prior knowledge of the subject. It conveys the basic elements of chemistry in a way that is clear and accessible, no matter your level of ability.


Graphene Chemistry

Graphene Chemistry

Author: De-en Jiang

Publisher: John Wiley & Sons

Published: 2013-10-14

Total Pages: 496

ISBN-13: 1119942128

DOWNLOAD EBOOK

What are the chemical aspects of graphene as a novel 2D material and how do they relate to the molecular structure? This book addresses these important questions from a theoretical and computational standpoint. Graphene Chemistry: Theoretical Perspectives presents recent exciting developments to correlate graphene’s properties and functions to its structure through state-of-the-art computational studies. This book focuses on the chemistry aspect of the structure-property relationship for many fascinating derivatives of graphene; various properties such as electronic structure, magnetism, and chemical reactivity, as well as potential applications in energy storage, catalysis, and nanoelectronics are covered. The book also includes two chapters with significant experimental portions, demonstrating how deep insights can be obtained by joint experimental and theoretical efforts. Topics covered include: Graphene ribbons: Edges, magnetism, preparation from unzipping, and electronic transport Nanographenes: Properties, reactivity, and synthesis Clar sextet rule in nanographene and graphene nanoribbons Porous graphene, nanomeshes, and graphene-based architecture and assemblies Doped graphene: Theory, synthesis, characterization and applications Mechanisms of graphene growth in chemical vapor deposition Surface adsorption and functionalization of graphene Conversion between graphene and graphene oxide Applications in gas separation, hydrogen storage, and catalysis Graphene Chemistry: Theoretical Perspectives provides a useful overview for computational and theoretical chemists who are active in this field and those who have not studied graphene before. It is also a valuable resource for experimentalist scientists working on graphene and related materials, who will benefit from many concepts and properties discussed here.


Crime Scene Chemistry for the Armchair Sleuth

Crime Scene Chemistry for the Armchair Sleuth

Author: Cathy Cobb

Publisher: Prometheus Books

Published: 2010-03-19

Total Pages: 394

ISBN-13: 1615920277

DOWNLOAD EBOOK

All new hands-on demonstrations and fictional minute mysteries illustrate chemical concepts as the authors present the science--and the realities--of forensic chemistry in a narrative style that makes this timely topic accessible to the nonchemist.


Galileo's Finger

Galileo's Finger

Author: Peter Atkins

Publisher: OUP Oxford

Published: 2004-05-27

Total Pages: 400

ISBN-13: 0191622508

DOWNLOAD EBOOK

Any literate person should be familiar with the central ideas of modern science. In his sparkling new book, Peter Atkins introduces his choice of the ten great ideas of science. With wit, charm, patience, and astonishing insights, he leads the reader through the emergence of the concepts, and then presents them in a strikingly effective manner. At the same time, he works into his engaging narrative an illustration of the scientific method and shows how simple ideas can have enormous consequences. His choice of the ten great ideas are: * Evolution occurs by natural selection, in which the early attempts at explaining the origin of species is followed by an account of the modern approach and some of its unsolved problems. * Inheritance is encoded in DNA, in which the story of the emergence of an understanding of inheritance is followed through to the mapping of the human genome. * Energy is conserved, in which we see how the central concept of energy gradually dawned on scientists as they mastered the motion of particles and the concept of heat. * All change is the consequence of the purposeless collapse of energy and matter into disorder, in which the extraordinarily simple concept of entropy is used to account for events in the world. * Matter is atomic, in which we see how the concept of atoms emerged and how the different personalities of the elements arise from the structures of their atoms. * Symmetry limits, guides, and drives, in which we see how concepts related to beauty can be extended to understand the nature of fundamental particles and the forces that act between them. * Waves behave like particles and particles behave like waves, in which we see how old familiar ideas gave way to the extraordinary insights of quantum theory and transformed our perception of matter. * The universe is expanding, in which we see how a combination of astronomy and a knowledge of elementary particles accounts for the origin of the universe and its long term future. * Spacetime is curved by matter, in which we see the emergence of the theories of special and general relativity and come to understand the nature of space and time. * If arithmetic is consistent, then it is incomplete, in which we learn the origin of numbers and arithmetic, see how the philosophy of mathematics lets us understand the nature of this most cerebral of subjects, and are brought to the limits of its power. C. P. Snow once said 'not knowing the second law of thermodynamics is like never having read a work by Shakespeare'. This is an extraordinary, exciting book that not only will make you literate in science but give you deep enjoyment on the way.


Handbook of Computational Chemistry

Handbook of Computational Chemistry

Author: Jerzy Leszczynski

Publisher: Springer Science & Business Media

Published: 2012-01-14

Total Pages: 1451

ISBN-13: 940070710X

DOWNLOAD EBOOK

This handbook is a guide to current methods of computational chemistry, explaining their limitations and advantages and providing examples of their applications. The first part outlines methods, the balance of volumes present numerous important applications.


Physics and Chemistry of Graphene (Second Edition)

Physics and Chemistry of Graphene (Second Edition)

Author: Toshiaki Enoki

Publisher: CRC Press

Published: 2019-11-01

Total Pages: 444

ISBN-13: 0429662793

DOWNLOAD EBOOK

Graphene has been attracting growing attentions in physics, chemistry, and device applications after the discovery of micromechanically cleaved graphene sheet by A. Geim and K. Novoselov, who were awarded the 2010 Nobel Prize in Physics. The electronic structure of graphene, which is described in terms of massless Dirac fermions, brings about unconventional electronic properties, which are not only an important basic issue in condensed matter physics but also a promising target of cutting-edge electronics/spintronics device applications. Meanwhile, from chemistry aspect, graphene is the extreme of condensed polycyclic hydrocarbon molecules extrapolated to infinite size. Here, the concept on aromaticity, which organic chemists utilize, is applicable. Interesting issues appearing between physics and chemistry are pronounced in nanosized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. This book comprehensively discusses the fundamental issues related to the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene, and graphene.


Springer Handbook of Nanotechnology

Springer Handbook of Nanotechnology

Author: Bharat Bhushan

Publisher: Springer

Published: 2017-11-05

Total Pages: 1704

ISBN-13: 3662543575

DOWNLOAD EBOOK

This comprehensive handbook has become the definitive reference work in the field of nanoscience and nanotechnology, and this 4th edition incorporates a number of recent new developments. It integrates nanofabrication, nanomaterials, nanodevices, nanomechanics, nanotribology, materials science, and reliability engineering knowledge in just one volume. Furthermore, it discusses various nanostructures; micro/nanofabrication; micro/nanodevices and biomicro/nanodevices, as well as scanning probe microscopy; nanotribology and nanomechanics; molecularly thick films; industrial applications and nanodevice reliability; societal, environmental, health and safety issues; and nanotechnology education. In this new edition, written by an international team of over 140 distinguished experts and put together by an experienced editor with a comprehensive understanding of the field, almost all the chapters are either new or substantially revised and expanded, with new topics of interest added. It is an essential resource for anyone working in the rapidly evolving field of key technology, including mechanical and electrical engineers, materials scientists, physicists, and chemists.


Materials Chemistry

Materials Chemistry

Author: Bradley D. Fahlman

Publisher: Springer Science & Business Media

Published: 2011-03-18

Total Pages: 742

ISBN-13: 9400706936

DOWNLOAD EBOOK

The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 2nd edition continues to offer innovative coverage and practical perspective throughout, e.g.: the opening solid-state chemistry chapter uses color illustrations of crystalline unit cells and digital photos of models to clarify their structures. This edition features more archetypical unit cells and includes fundamental principles of X-ray crystallography and band theory. In addition, an ample amorphous-solids section has been expanded to include more details regarding zeolite syntheses, as well as ceramics classifications and their biomaterial applications. The subsequent metals chapter has been re-organized for clarity, and continues to treat the full spectrum of powder metallurgical methods, complex phase behaviors of the Fe-C system and steels, and topics such as corrosion and shape-memory properties. The mining/processing of metals has also been expanded to include photographs of various processes occurring in an actual steelmaking plant. The semiconductor chapter addresses evolution and limitations/solutions of modern transistors, as well as IC fabrication and photovoltaics. Building on the fundamentals presented earlier, more details regarding the band structure of semiconductors is now included, as well as discussions of GaAs vs. Si for microelectronics applications, and surface reconstruction nomenclature. The emerging field of ‘soft lithographic’ patterning is now included in this chapter, and thin film deposition methodologies are also greatly expanded to now include more fundamental aspects of chemical vapor deposition (CVD) and atomic layer deposition (ALD). The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. This chapter describes all polymeric classes including dendritic polymers, as well as important additives such as plasticizers and flame-retardants, and emerging applications such as molecular magnets and self-repairing polymers. This edition now features ‘click chemistry’ polymerization, silicones, conductive polymers and biomaterials applications such as biodegradable polymers, biomedical devices, drug delivery, and contact lenses. Final chapters on nanomaterials and materials-characterization techniques are also carefully surveyed, focusing on nomenclature, synthetic techniques, and applications taken from the latest scientific literature. The 2nd edition has been significantly updated to now include nanotoxicity, vapor-phase growth of 0-D nanostructures, and more details regarding synthetic techniques and mechanisms for solution-phase growth of various nanomaterials. Graphene, recognized by the 2010 Nobel Prize in Physics, is now also included in this edition. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions. The appendices have also been updated with additional laboratory modules for materials synthesis (e.g., porous silicon) and a comprehensive timeline of major materials developments.