Approximating Integrals Via Monte Carlo and Deterministic Methods

Approximating Integrals Via Monte Carlo and Deterministic Methods

Author: Michael John Evans

Publisher: Oxford University Press on Demand

Published: 2000

Total Pages: 288

ISBN-13: 9780198502784

DOWNLOAD EBOOK

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals thelower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primaryMarkov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.


Approximating Integrals via Monte Carlo and Deterministic Methods

Approximating Integrals via Monte Carlo and Deterministic Methods

Author: Michael Evans

Publisher: OUP Oxford

Published: 2000-03-23

Total Pages: 302

ISBN-13: 019158987X

DOWNLOAD EBOOK

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals the lower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primary Markov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.


Integrated Tracking, Classification, and Sensor Management

Integrated Tracking, Classification, and Sensor Management

Author: Mahendra Mallick

Publisher: John Wiley & Sons

Published: 2012-12-03

Total Pages: 738

ISBN-13: 0470639059

DOWNLOAD EBOOK

A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.


Surrogate Model-Based Engineering Design and Optimization

Surrogate Model-Based Engineering Design and Optimization

Author: Ping Jiang

Publisher: Springer Nature

Published: 2019-11-01

Total Pages: 246

ISBN-13: 9811507317

DOWNLOAD EBOOK

This book covers some of the most popular methods in design space sampling, ensembling surrogate models, multi-fidelity surrogate model construction, surrogate model selection and validation, surrogate-based robust design optimization, and surrogate-based evolutionary optimization. Surrogate or metamodels are now frequently used in complex engineering product design to replace expensive simulations or physical experiments. They are constructed from available input parameter values and the corresponding output performance or quantities of interest (QOIs) to provide predictions based on the fitted or interpolated mathematical relationships. The book highlights a range of methods for ensembling surrogate and multi-fidelity models, which offer a good balance between surrogate modeling accuracy and building cost. A number of real-world engineering design problems, such as three-dimensional aircraft design, are also provided to illustrate the ability of surrogates for supporting complex engineering design. Lastly, illustrative examples are included throughout to help explain the approaches in a more “hands-on” manner.


Bayesian Missing Data Problems

Bayesian Missing Data Problems

Author: Ming T. Tan

Publisher: CRC Press

Published: 2009-08-26

Total Pages: 337

ISBN-13: 1420077503

DOWNLOAD EBOOK

Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-wor


Automatic Nonuniform Random Variate Generation

Automatic Nonuniform Random Variate Generation

Author: Wolfgang Hörmann

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 439

ISBN-13: 3662059460

DOWNLOAD EBOOK

The recent concept of universal (also called automatic or black-box) random variate generation can only be found dispersed in the literature. Being unique in its overall organization, the book covers not only the mathematical and statistical theory but also deals with the implementation of such methods. All algorithms introduced in the book are designed for practical use in simulation and have been coded and made available by the authors. Examples of possible applications of the presented algorithms (including option pricing, VaR and Bayesian statistics) are presented at the end of the book.


Computational Approaches for Aerospace Design

Computational Approaches for Aerospace Design

Author: Andy Keane

Publisher: John Wiley & Sons

Published: 2005-08-05

Total Pages: 602

ISBN-13: 0470855479

DOWNLOAD EBOOK

Over the last fifty years, the ability to carry out analysis as a precursor to decision making in engineering design has increased dramatically. In particular, the advent of modern computing systems and the development of advanced numerical methods have made computational modelling a vital tool for producing optimized designs. This text explores how computer-aided analysis has revolutionized aerospace engineering, providing a comprehensive coverage of the latest technologies underpinning advanced computational design. Worked case studies and over 500 references to the primary research literature allow the reader to gain a full understanding of the technology, giving a valuable insight into the world’s most complex engineering systems. Key Features: Includes background information on the history of aerospace design and established optimization, geometrical and mathematical modelling techniques, setting recent engineering developments in a relevant context. Examines the latest methods such as evolutionary and response surface based optimization, adjoint and numerically differentiated sensitivity codes, uncertainty analysis, and concurrent systems integration schemes using grid-based computing. Methods are illustrated with real-world applications of structural statics, dynamics and fluid mechanics to satellite, aircraft and aero-engine design problems. Senior undergraduate and postgraduate engineering students taking courses in aerospace, vehicle and engine design will find this a valuable resource. It will also be useful for practising engineers and researchers working on computational approaches to design.


Bayesian Estimation and Tracking

Bayesian Estimation and Tracking

Author: Anton J. Haug

Publisher: John Wiley & Sons

Published: 2012-05-29

Total Pages: 400

ISBN-13: 1118287800

DOWNLOAD EBOOK

A practical approach to estimating and tracking dynamic systems in real-worl applications Much of the literature on performing estimation for non-Gaussian systems is short on practical methodology, while Gaussian methods often lack a cohesive derivation. Bayesian Estimation and Tracking addresses the gap in the field on both accounts, providing readers with a comprehensive overview of methods for estimating both linear and nonlinear dynamic systems driven by Gaussian and non-Gaussian noices. Featuring a unified approach to Bayesian estimation and tracking, the book emphasizes the derivation of all tracking algorithms within a Bayesian framework and describes effective numerical methods for evaluating density-weighted integrals, including linear and nonlinear Kalman filters for Gaussian-weighted integrals and particle filters for non-Gaussian cases. The author first emphasizes detailed derivations from first principles of eeach estimation method and goes on to use illustrative and detailed step-by-step instructions for each method that makes coding of the tracking filter simple and easy to understand. Case studies are employed to showcase applications of the discussed topics. In addition, the book supplies block diagrams for each algorithm, allowing readers to develop their own MATLAB® toolbox of estimation methods. Bayesian Estimation and Tracking is an excellent book for courses on estimation and tracking methods at the graduate level. The book also serves as a valuable reference for research scientists, mathematicians, and engineers seeking a deeper understanding of the topics.


Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

Author: Josef Dick

Publisher: Springer

Published: 2018-05-23

Total Pages: 1330

ISBN-13: 3319724568

DOWNLOAD EBOOK

This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.


Probability and Statistics

Probability and Statistics

Author: Michael J. Evans

Publisher: Macmillan

Published: 2004

Total Pages: 704

ISBN-13: 9780716747420

DOWNLOAD EBOOK

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.