This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.
Selected, peer reviewed papers from the Third International Conference on Applied Mechanics, Materials and Manufacturing (ICAMMM 2013), August 24-25, 2013, Dalian, China
As technology advances, it is imperative to stay current in the newest developments made within the engineering industry and within material sciences. Trends in manufacturing such as 3D printing, casting, welding, surface modification, computer numerical control (CNC), non-traditional, Industry 4.0 ergonomics, and hybrid machining methods must be closely examined to utilize these important resources for the betterment of society. Advanced Manufacturing Techniques for Engineering and Engineered Materials provides a unified and complete overview about the recent and emerging trends, developments, and associated technology with scope for the commercialization of techniques specific to manufacturing materials. This book also reviews the various machining methods for difficult-to-cut materials and novel materials including matrix composites. Covering topics such as agro-waste, conventional machining, and material performance, this book is an essential resource for researchers, engineers, technologists, students and professors of higher education, industry workers, entrepreneurs, researchers, and academicians.
This book focuses on advanced processing of new and emerging materials, and advanced manufacturing systems based on thermal transport and fluid flow. It examines recent areas of considerable growth in new and emerging manufacturing techniques and materials, such as fiber optics, manufacture of electronic components, polymeric and composite materials, alloys, microscale components, and new devices and applications. The book includes analysis, mathematical modeling, numerical simulation and experimental study of processes for prediction, design and optimization. It discusses the link between the characteristics of the final product and the basic transport mechanisms and provides a foundation for the study of a wide range of manufacturing processes. Focuses on new and advanced methods of manufacturing and materials processing with traditional methods described in light of the new approaches; Maximizes reader understanding of the fundamentals of how materials change, what transport processes are involved, and how these can be simulated and optimized - concepts not covered elsewhere; Introduces new materials and applications in manufacturing and summarizes traditional processing methods, such as heat treatment, extrusion, casting, injection molding, and bonding, to show how they have evolved and how they could be used for meeting the challenges that we face today.
This book discusses advanced materials and manufacturing processes with insights and overviews on tribology, automation, mechanical, biomedical, and aerospace engineering, as well as the optimization of industrial applications. The book explores the different types of composite materials while reporting on the design considerations and applications of each. Offering an overview of futuristic research areas, the book examines various engineering optimization and multi-criteria decision-making techniques and introduces a specific control framework used in analyzing processes. The book includes problem analyses and solving skills and covers different types of composite materials, their design considerations, and applications. This book is an informational resource for advanced undergraduate and graduate students, researchers, scholars, and field professionals, providing an update on the current advancements in the field of manufacturing processes.
This text provides an in-depth overview of sustainability in machining processes, challenges during machining of difficult-to-cut materials and different ways of green machining in achieving sustainability. It discusses important topics including green and sustainable machining, dry machining, textured cutting coated tools for machining, solid lubricants-based machining, gas-cooled machining, cryogenic cooling for intelligent machining, artificial neural network for machining, big data based machining, and hybrid intelligent machining. This book- Covers advances in sustainable machining such as gas-cooled machining, near dry machining, and minimum quantity lubrication. Explores use of big data, machine learning and artificial intelligence for machining processes. Provides case studies and experimental design as well as results with analysis focusing on achieving sustainability. Discusses artificial intelligence and machine learning based machining processes. Cover the latest applications of sustainable manufacturing for a better understanding of the concepts. The text is primarily written for senior undergraduate, graduate students, and researchers in the fields of mechanical, manufacturing, industrial, production engineering and materials science.
How to rethink innovation and revitalize America's declining manufacturing sector by encouraging advanced manufacturing, bringing innovative technologies into the production process. The United States lost almost one-third of its manufacturing jobs between 2000 and 2010. As higher-paying manufacturing jobs are replaced by lower-paying service jobs, income inequality has been approaching third world levels. In particular, between 1990 and 2013, the median income of men without high school diplomas fell by an astonishing 20% between 1990 and 2013, and that of men with high school diplomas or some college fell by a painful 13%. Innovation has been left largely to software and IT startups, and increasingly U.S. firms operate on a system of “innovate here/produce there,” leaving the manufacturing sector behind. In this book, William Bonvillian and Peter Singer explore how to rethink innovation and revitalize America's declining manufacturing sector. They argue that advanced manufacturing, which employs such innovative technologies as 3-D printing, advanced material, photonics, and robotics in the production process, is the key. Bonvillian and Singer discuss transformative new production paradigms that could drive up efficiency and drive down costs, describe the new processes and business models that must accompany them, and explore alternative funding methods for startups that must manufacture. They examine the varied attitudes of mainstream economics toward manufacturing, the post-Great Recession policy focus on advanced manufacturing, and lessons from the new advanced manufacturing institutes. They consider the problem of “startup scaleup,” possible new models for training workers, and the role of manufacturing in addressing “secular stagnation” in innovation, growth, the middle classes, productivity rates, and related investment. As recent political turmoil shows, the stakes could not be higher.
Modern Manufacturing Technology: Spotlight on Future summarizes the emergence and development of modern manufacturing techniques (MMTs) with a focus on metallic and advanced material-based additive manufacturing technologies and their potential applications. Further, it explores advanced machining techniques for production of novel nanomaterials. The book also covers modern sophisticated techniques for the fabrication of ultrafine electronic devices such as micro-electromechanical systems (MEMS), nano-electromechanical systems (NEMS), semiconductors, and optical systems. A dedicated chapter on manufacturing technology for Industry 4.0 is included. Features: Describes the background of manufacturing techniques in brief including the advent of and introduction to MMTs Reviews various types of MMTs established in recent years and their accelerated growth and development innovation-driven applications Overviews the physical and chemical techniques used for nanomaterials production Explores the fabrication mechanisms of MEMS, NEMS, semiconductors and optical devices Provides a conceptual overview of additive manufacturing technologies This book is geared to undergraduate and postgraduate students and professionals in mechanical and manufacturing engineering, and the manufacturing industry.