Applied Abstract Algebra with MapleTM and MATLAB provides an in-depth introduction to real-world abstract algebraic problems. This popular textbook covers a variety of topics including block designs, coding theory, cryptography, and counting techniques, including Polya's and Burnside's theorems. The book also includes a concise review of all prereq
This book provides an in-depth introduction to real-world abstract algebraic problems. Chapters examine the prerequisite advanced mathematics needed, examine block designs, coding theory, and cryptography while the final chapters cover counting techniques, including Pólya's and Burnside's theorems. Eliminating the need for heavy number crunching, sophisticated mathematical software packages open the door to areas like cryptography, coding theory, and combinatorics that are dependent on abstract algebra. This book explores these topics and shows how to apply the software programs to abstract algebra and its related fields.
Eliminating the need for heavy number-crunching, sophisticated mathematical software packages open the door to areas like cryptography, coding theory, and combinatorics that are dependent on abstract algebra. Applications of Abstract Algebra with Maple and MATLAB®, Second Edition explores these topics and shows how to apply the software programs to abstract algebra and its related fields. Carefully integrating MapleTM and MATLAB®, this book provides an in-depth introduction to real-world abstract algebraic problems. The first chapter offers a concise and comprehensive review of prerequisite advanced mathematics. The next several chapters examine block designs, coding theory, and cryptography while the final chapters cover counting techniques, including Pólya's and Burnside's theorems. Other topics discussed include the Rivest, Shamir, and Adleman (RSA) cryptosystem, digital signatures, primes for security, and elliptic curve cryptosystems. New to the Second Edition Three new chapters on Vigenère ciphers, the Advanced Encryption Standard (AES), and graph theory as well as new MATLAB and Maple sections Expanded exercises and additional research exercises Maple and MATLAB files and functions available for download online and from a CD-ROM With the incorporation of MATLAB, this second edition further illuminates the topics discussed by eliminating extensive computations of abstract algebraic techniques. The clear organization of the book as well as the inclusion of two of the most respected mathematical software packages available make the book a useful tool for students, mathematicians, and computer scientists.
The mathematical concepts of abstract algebra may indeed be considered abstract, but its utility is quite concrete and continues to grow in importance. Unfortunately, the practical application of abstract algebra typically involves extensive and cumbersome calculations-often frustrating even the most dedicated attempts to appreciate and employ its intricacies. Now, however, sophisticated mathematical software packages help obviate the need for heavy number-crunching and make fields dependent on the algebra more interesting-and more accessible. Applications of Abstract Algebra with Maple opens the door to cryptography, coding, Polya counting theory, and the many other areas dependent on abstract algebra. The authors have carefully integrated Maple V throughout the text, enabling readers to see realistic examples of the topics discussed without struggling with the computations. But the book stands well on its own if the reader does not have access to the software. The text includes a first-chapter review of the mathematics required-groups, rings, and finite fields-and a Maple tutorial in the appendix along with detailed treatments of coding, cryptography, and Polya theory applications. Applications of Abstract Algebra with Maple packs a double punch for those interested in beginning-or advancing-careers related to the applications of abstract algebra. It not only provides an in-depth introduction to the fascinating, real-world problems to which the algebra applies, it offers readers the opportunity to gain experience in using one of the leading and most respected mathematical software packages available.
This book may be used by students and professionals in physics and engineering that have completed first-year calculus and physics. An introductory chapter reviews algebra, trigonometry, units and complex numbers that are frequently used in physics. Examples using MATLAB and Maple for symbolic and numerical calculations in physics with a variety of plotting features are included in all 16 chapters. The book applies many of mathematical concepts covered in Chapters 1-9 to fundamental physics topics in mechanics, electromagnetics; quantum mechanics and relativity in Chapters 10-16. Companion files are included with MATLAB and Maple worksheets and files, and all of the figures from the text. Features: • Each chapter includes the mathematical development of the concept with numerous examples • MATLAB & Maple examples are integrated in each chapter throughout the book • Applies the mathematical concepts to fundamental physics principles such as relativity, mechanics, electromagnetics, etc. • Introduces basic MATLAB and Maple commands and programming structures • Includes companion files with MATLAB and Maple files and worksheets, and all of the figures from the text
Using mathematical tools from number theory and finite fields, Applied Algebra: Codes, Ciphers, and Discrete Algorithms, Second Edition presents practical methods for solving problems in data security and data integrity. It is designed for an applied algebra course for students who have had prior classes in abstract or linear algebra. While the con
A Bridge to Higher Mathematics is more than simply another book to aid the transition to advanced mathematics. The authors intend to assist students in developing a deeper understanding of mathematics and mathematical thought. The only way to understand mathematics is by doing mathematics. The reader will learn the language of axioms and theorems and will write convincing and cogent proofs using quantifiers. Students will solve many puzzles and encounter some mysteries and challenging problems. The emphasis is on proof. To progress towards mathematical maturity, it is necessary to be trained in two aspects: the ability to read and understand a proof and the ability to write a proof. The journey begins with elements of logic and techniques of proof, then with elementary set theory, relations and functions. Peano axioms for positive integers and for natural numbers follow, in particular mathematical and other forms of induction. Next is the construction of integers including some elementary number theory. The notions of finite and infinite sets, cardinality of counting techniques and combinatorics illustrate more techniques of proof. For more advanced readers, the text concludes with sets of rational numbers, the set of reals and the set of complex numbers. Topics, like Zorn’s lemma and the axiom of choice are included. More challenging problems are marked with a star. All these materials are optional, depending on the instructor and the goals of the course.
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author