Mathematical Analysis and Numerical Methods for Science and Technology

Mathematical Analysis and Numerical Methods for Science and Technology

Author: Robert Dautray

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 552

ISBN-13: 3642615295

DOWNLOAD EBOOK

The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.


Hardy Inequalities on Homogeneous Groups

Hardy Inequalities on Homogeneous Groups

Author: Michael Ruzhansky

Publisher: Springer

Published: 2019-07-02

Total Pages: 579

ISBN-13: 303002895X

DOWNLOAD EBOOK

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.


Harmonic Analysis (PMS-43), Volume 43

Harmonic Analysis (PMS-43), Volume 43

Author: Elias M. Stein

Publisher: Princeton University Press

Published: 2016-06-02

Total Pages: 712

ISBN-13: 140088392X

DOWNLOAD EBOOK

This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.


Advances in Discrete Tomography and Its Applications

Advances in Discrete Tomography and Its Applications

Author: Gabor T. Herman

Publisher: Springer Science & Business Media

Published: 2008-01-19

Total Pages: 401

ISBN-13: 0817645438

DOWNLOAD EBOOK

The book provides a unified presentation of new methods, algorithms, and select applications that are the foundations of multidimensional image construction and reconstruction. The self-contained survey chapters, written by leading mathematicians, engineers, and computer scientists, present cutting-edge research and results in the field. Three main areas are covered: theoretical results, algorithms, and practical applications. Following an historical and introductory overview of the field, the book explores the various mathematical and computational problems of discrete tomography with an emphasis on new applications.


Number Theory I

Number Theory I

Author: Yu. I. Manin

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 311

ISBN-13: 3662080052

DOWNLOAD EBOOK

A unified survey of both the status quo and the continuing trends of various branches of number theory. Motivated by elementary problems, the authors present todays most significant results and methods. Topics covered include non-Abelian generalisations of class field theory, recursive computability and Diophantine equations, zeta- and L-functions. The book is rounded off with an overview of the major conjectures, most of which are based on analogies between functions and numbers, and on connections with other branches of mathematics such as analysis, representation theory, geometry and algebraic topology.


Arithmetic and Geometry

Arithmetic and Geometry

Author: Luis Dieulefait

Publisher: Cambridge University Press

Published: 2015-10-08

Total Pages: 539

ISBN-13: 1107462541

DOWNLOAD EBOOK

The world's leading authorities describe the state of the art in Serre's conjecture and rational points on algebraic varieties.