Applications of Pulse-Coupled Neural Networks

Applications of Pulse-Coupled Neural Networks

Author: Yide Ma

Publisher: Springer Science & Business Media

Published: 2011-09-02

Total Pages: 206

ISBN-13: 3642137458

DOWNLOAD EBOOK

"Applications of Pulse-Coupled Neural Networks" explores the fields of image processing, including image filtering, image segmentation, image fusion, image coding, image retrieval, and biometric recognition, and the role of pulse-coupled neural networks in these fields. This book is intended for researchers and graduate students in artificial intelligence, pattern recognition, electronic engineering, and computer science. Prof. Yide Ma conducts research on intelligent information processing, biomedical image processing, and embedded system development at the School of Information Science and Engineering, Lanzhou University, China.


Image Processing Using Pulse-Coupled Neural Networks

Image Processing Using Pulse-Coupled Neural Networks

Author: Thomas Lindblad

Publisher: Springer Science & Business Media

Published: 2005-08-02

Total Pages: 184

ISBN-13: 9783540242185

DOWNLOAD EBOOK

* Weitere Angaben Verfasser: Thomas Lindblad is a professor at the Royal Institute of Technology (Physics) in Stockholm. Working and teaching nuclear and environmental physics his main interest is with sensors, signal processing and intelligent data analysis of torrent data from experiments on-line accelerators, in space, etc. Jason Kinser is an associate professor at George Mason University. He has developed a plethora of image processing applications in the medical, military, and industrial fields. He has been responsible for the conversion of PCNN theory into practical applications providing many improvements in both speed and performance


Practical Machine Learning and Image Processing

Practical Machine Learning and Image Processing

Author: Himanshu Singh

Publisher: Apress

Published: 2019-02-26

Total Pages: 177

ISBN-13: 1484241495

DOWNLOAD EBOOK

Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.


Nature-Inspired Design of Hybrid Intelligent Systems

Nature-Inspired Design of Hybrid Intelligent Systems

Author: Patricia Melin

Publisher: Springer

Published: 2016-12-08

Total Pages: 817

ISBN-13: 331947054X

DOWNLOAD EBOOK

This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.


Image Processing Using Pulse-Coupled Neural Networks

Image Processing Using Pulse-Coupled Neural Networks

Author: Thomas Lindblad

Publisher: Springer Science & Business Media

Published: 2005-11-28

Total Pages: 169

ISBN-13: 3540282939

DOWNLOAD EBOOK

This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from images. As these attributes form the foundations of most image processing tasks, the use of PCNNs facilitates traditional tasks such as recognition, foveation, and image fusion. PCNN technology has also paved the way for new image processing techniques such as object isolation, spiral image fusion, image signatures, and content-based image searches. This volume contains examples of several image processing applications, as well as a review of hardware implementations.


Advances in Electrical and Computer Technologies

Advances in Electrical and Computer Technologies

Author: Thangaprakash Sengodan

Publisher: Springer Nature

Published: 2021-02-26

Total Pages: 1335

ISBN-13: 9811590192

DOWNLOAD EBOOK

This book comprises select proceedings of the International Conference on Advances in Electrical and Computer Technologies 2020 (ICAECT 2020). The papers presented in this book are peer-reviewed and cover latest research in electrical, electronics, communication and computer engineering. Topics covered include smart grids, soft computing techniques in power systems, smart energy management systems, power electronics, feedback control systems, biomedical engineering, geo informative systems, grid computing, data mining, image and signal processing, video processing, computer vision, pattern recognition, cloud computing, pervasive computing, intelligent systems, artificial intelligence, neural network and fuzzy logic, broad band communication, mobile and optical communication, network security, VLSI, embedded systems, optical networks and wireless communication. The volume can be useful for students and researchers working in the different overlapping areas of electrical, electronics and communication engineering.


Artificial Neural Networks

Artificial Neural Networks

Author: Kevin L. Priddy

Publisher: SPIE Press

Published: 2005

Total Pages: 184

ISBN-13: 9780819459879

DOWNLOAD EBOOK

This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.


Twin Support Vector Machines

Twin Support Vector Machines

Author: Jayadeva

Publisher: Springer

Published: 2016-10-12

Total Pages: 221

ISBN-13: 3319461869

DOWNLOAD EBOOK

This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on “Additional Topics” has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.


Spiking Neuron Models

Spiking Neuron Models

Author: Wulfram Gerstner

Publisher: Cambridge University Press

Published: 2002-08-15

Total Pages: 498

ISBN-13: 9780521890793

DOWNLOAD EBOOK

Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.


Neuromorphic Photonics

Neuromorphic Photonics

Author: Paul R. Prucnal

Publisher: CRC Press

Published: 2017-05-08

Total Pages: 412

ISBN-13: 1498725244

DOWNLOAD EBOOK

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.