Polyurethanes in Biomedical Applications studies the use of polyurethanes in implanted medical devices. This analysis describes the concepts of polymer science, the manufacture of polyurethanes, and the biological responses to implant polyurethanes, reflecting the developments in biomaterials science and the interdisciplinary nature of bioengineering.
No book has been published that gives a detailed description of all the types of plastic materials used in medical devices, the unique requirements that the materials need to comply with and the ways standard plastics can be modified to meet such needs. This book will start with an introduction to medical devices, their classification and some of the regulations (both US and global) that affect their design, production and sale. A couple of chapters will focus on all the requirements that plastics need to meet for medical device applications. The subsequent chapters describe the various types of plastic materials, their properties profiles, the advantages and disadvantages for medical device applications, the techniques by which their properties can be enhanced, and real-world examples of their use. Comparative tables will allow readers to find the right classes of materials suitable for their applications or new product development needs.
Hydrophilic polyurethanes have the unique property of being able to absorb or otherwise manage moisture-and this makes them valuable in medical and a number of other important commercial applications. This new book provides a concise, unified presentation of hydrophilic polyurethanes technology and applications. All important topics from chemistry, analysis, processing and quality systems to product development and applications are covered clearly and systematically. The text is well illustrated by more than 45 flowcharts and diagrams and supplemented by more than 20 data tables. A special feature of this new book is its inclusion of case studies of recent development of commercially valuable products using hydrophilic polyurethanes. These case studies illustrate how these unique materials can be tailored to specific application needs. The information in this new book will be useful to all those involved in the research, development and applications of polymers, biomaterials, and other materials whose utility requires the special properties of hydrophilic polyurethanes. To receive your copy promptly, please order now. Information on ordering - by mail, fax, telephone or the publisher's secure website - follows the complete table of contents on the reverse. The Author Tim Thomson is the director of Main Street Technologies, an independent research organization specializing in the development of advanced medical materials and devices. Previously he was technical manager of the Hypol Group, W. R. Grace & Co. He is recognized as an authority on hydrophilic polyurethanes and their use in medical device and other applications. He has an M.S. in Physical Chemistry from Michigan Technological University and has been awarded six patents in synthetic chemistry and process control.
Biomaterials: From Molecules to Engineered Tissue gives examples of the application areas of biomaterials involving molecules at one end of the spectrum and finished devices in the other. It covers molecular approaches as well as molecules functional in preparing and modifying biomaterials, medical devices and systems, tissue engineering and artificial organs. Chapters on biomedical informatics and ethics complement the design and production aspects with their contribution in informatics and ethical concerns of biomedical research. This is a reference book for the advanced graduate student eager to learn the biomaterials area and for all researchers working in medicine, pharmacy, engineering and basic sciences in universities, hospitals, and industry involved in biomaterials and biomedical device production.
Applications of Polyurethanes in Medical Devices provides detailed coverage of polyurethane (PU) chemistry, processing and preparation for performant medical devices. Polyurethanes have found many uses in medical applications, due to their biocompatibility, biostability, physical properties, surface polarity, and the ability to suit the field of application. This book enables the reader to understand polyurethane and how this valuable material can be used in medical devices. Sections cover the chemistry, structure, and properties of polyurethane, with in-depth sections examining raw materials, reaction chemistry, synthesis techniques, reaction kinetics, material microstructure, and structure-property relationships. Subsequent chapters demonstrate how polyurethane can be utilized in medical device applications, examining biological properties, rheology and processing before methodical coverage explains how polyurethane may be used for each category of medical device. Finally, future directions, and safety and environmental aspects, are covered. - Bridges the gap between polyurethane chemistry, processing and preparation for cutting-edge medical device applications - Includes in-depth coverage of polyurethane, covering raw materials, chemistry, synthesis techniques, reaction kinetics, properties and microstructural analysis - Takes a valuable and practical approach, addressing manufacturing issues and using testing and modeling to solve problems encountered in processing
Plastics in Medical Devices for Cardiovascular Applications enables designers of new cardiovascular medical devices to make decisions about the kind of plastics that can go into the manufacture of their device by explaining the property requirements of various applications in this area, including artificial valves, lead insulation, balloons, vascular grafts, and more. - Enables designers to improve device performance and remain compliant with regulations by selecting the best material for each application - Presents a range of applications, including artificial valves, stents, and vascular grafts - Explains which materials can be used for each application, and why each is appropriate, thus assisting in the design of better tools and processes
Looking beyond the traditional applications of polyurethanes (PUR), Polyurethanes as Specialty Chemicals presents a different approach to polyurethane chemistry by examining a range of new products and new research for both environmental and medical applications. This book is also the first in its field to provide useful design tools for product de
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future