This book includes a selection of research work in the mobile robotics area, where several interesting topics are presented. In this way we find a review of multi-agents, different techniques applied to the navigation systems, artificial intelligence algorithms, which include deep learning applications, systems where a Kalman filter estimator is extended for visual odometry, and finally the design of an on-chip system for the execution of cognitive agents. Additionally, the development of different ideas in mobile robot applications are included and hopefully will be useful and enriching for readers.
The author compiles everything a student or experienced developmental engineer needs to know about the supporting technologies associated with the rapidly evolving field of robotics.From the table of contents: Design Considerations * Dead Reckoning * Odometry Sensors * Doppler and Inertial Navigation * Typical Mobility Configurations * Tactile and
It has long been the goal of engineers to develop tools that enhance our ability to do work, increase our quality of life, or perform tasks that are either beyond our ability, too hazardous, or too tedious to be left to human efforts. Autonomous mobile robots are the culmination of decades of research and development, and their potential is seemingly unlimited. Roadmap to the Future Serving as the first comprehensive reference on this interdisciplinary technology, Autonomous Mobile Robots: Sensing, Control, Decision Making, and Applications authoritatively addresses the theoretical, technical, and practical aspects of the field. The book examines in detail the key components that form an autonomous mobile robot, from sensors and sensor fusion to modeling and control, map building and path planning, and decision making and autonomy, and to the final integration of these components for diversified applications. Trusted Guidance A duo of accomplished experts leads a team of renowned international researchers and professionals who provide detailed technical reviews and the latest solutions to a variety of important problems. They share hard-won insight into the practical implementation and integration issues involved in developing autonomous and open robotic systems, along with in-depth examples, current and future applications, and extensive illustrations. For anyone involved in researching, designing, or deploying autonomous robotic systems, Autonomous Mobile Robots is the perfect resource.
This book presents a unique examination of mobile robots and embedded systems, from introductory to intermediate level. It is structured in three parts, dealing with Embedded Systems (hardware and software design, actuators, sensors, PID control, multitasking), Mobile Robot Design (driving, balancing, walking, and flying robots), and Mobile Robot Applications (mapping, robot soccer, genetic algorithms, neural networks, behavior-based systems, and simulation). The book is written as a text for courses in computer science, computer engineering, IT, electronic engineering, and mechatronics, as well as a guide for robot hobbyists and researchers.
Introduction to Mobile Robot Control provides a complete and concise study of modeling, control, and navigation methods for wheeled non-holonomic and omnidirectional mobile robots and manipulators. The book begins with a study of mobile robot drives and corresponding kinematic and dynamic models, and discusses the sensors used in mobile robotics. It then examines a variety of model-based, model-free, and vision-based controllers with unified proof of their stabilization and tracking performance, also addressing the problems of path, motion, and task planning, along with localization and mapping topics. The book provides a host of experimental results, a conceptual overview of systemic and software mobile robot control architectures, and a tour of the use of wheeled mobile robots and manipulators in industry and society. Introduction to Mobile Robot Control is an essential reference, and is also a textbook suitable as a supplement for many university robotics courses. It is accessible to all and can be used as a reference for professionals and researchers in the mobile robotics field. - Clearly and authoritatively presents mobile robot concepts - Richly illustrated throughout with figures and examples - Key concepts demonstrated with a host of experimental and simulation examples - No prior knowledge of the subject is required; each chapter commences with an introduction and background
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
The mobile robot systems described in this book were selected from among the best available implementations by leading universities and research laboratories. These are robots that have left the lab and been tested in natural and unknown environments. They perform many different tasks, from giving tours to collecting trash. Many have distinguished themselves (usually with first- or second-place finishes) at various indoor and outdoor mobile robot competitions. Each case study is self-contained and includes detailed descriptions of important algorithms, including pseudo-code. Thus this volume serves as a recipe book for the design of successful mobile robot applications. Common themes include navigation and mapping, computer vision, and architecture. Contributors Ronald Arkin, Tucker Balch, Michael Brady, Don Brutzman, Arno Bucken, R. James Firby, Erann Gat, Tony Healy, Ian Horswill, Housheng Hu, Sven Koenig, Kurt Konolige David Kortenkamp, Dave Marco, Bob McGhee, Robin Murphy, Karen Myers, Illah Nourbakhsh, Peter Prokopowicz, Bill Schiller, Reid Simmons, Michael Swain, Sebastian Thrun
This monograph discusses issues related to estimation, control, and motion planning for mobile robots operating in rough terrain, with particular attention to planetary exploration rovers. Rough terrain robotics is becoming increasingly important in space exploration, and industrial applications. However, most current motion planning and control algorithms are not well suited to rough terrain mobility, since they do not consider the physical characteristics of the rover and its environment. Specific addressed topics are: wheel terrain interaction modeling, including terrain parameter estimation and wheel terrain contact angle estimation; rough terrain motion planning; articulated suspension control; and traction control. Simulation and experimental results are presented that show that the desribed algorithms lead to improved mobility for robotic systems in rough terrain.
This open access book bridges the gap between playing with robots in school and studying robotics at the upper undergraduate and graduate levels to prepare for careers in industry and research. Robotic algorithms are presented formally, but using only mathematics known by high-school and first-year college students, such as calculus, matrices and probability. Concepts and algorithms are explained through detailed diagrams and calculations. Elements of Robotics presents an overview of different types of robots and the components used to build robots, but focuses on robotic algorithms: simple algorithms like odometry and feedback control, as well as algorithms for advanced topics like localization, mapping, image processing, machine learning and swarm robotics. These algorithms are demonstrated in simplified contexts that enable detailed computations to be performed and feasible activities to be posed. Students who study these simplified demonstrations will be well prepared for advanced study of robotics. The algorithms are presented at a relatively abstract level, not tied to any specific robot. Instead a generic robot is defined that uses elements common to most educational robots: differential drive with two motors, proximity sensors and some method of displaying output to the user. The theory is supplemented with over 100 activities, most of which can be successfully implemented using inexpensive educational robots. Activities that require more computation can be programmed on a computer. Archives are available with suggested implementations for the Thymio robot and standalone programs in Python.